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Abstract

We describe a general computer program called HCT that is designed

to calculate time-dependent problems involving one-dimensional gas hydro-

dynamics, transport, and detailed chemical kinetics. HCT is designed to

handle a wide variety of calculations in the framework of a general \robust"

integrator. We describe in detail the di�erence equations used and the rea-

soning governing their selection. The solution of the di�erence equation by

a generalized Newton's iteration scheme is described. The structure of the

coding as implemented on the CDC 7600 1 at Lawrence Livermore Labo-

ratory is explained. An appendix gives a glossary of the variables needed

to run problems. A complete listing of the program is given in a second

appendix. Several sample problems are described to illustrate the behavior

and capabilities of HCT. A comparison with other programs that calculate

similar phenomena is given.

1In the past, HCT has been implemented on Cray-1s, Cray-X/MPs Cray Y/MPs run-

ning LTSS and NLTSS at LCC, Cray-1s and Cray-X/MPs running CTSS at NERSC (then

MFECC), Crays running UNICOS, Sun 3/50s (OS4.0), Sun 4/260s, MIPS-120, Sparc So-

laris, VAX VMS, and PC 586s running Windows and Microsoft FORTRAN Powerstation.

It currently runs primarily on IBM RS/6000s running AIX and Sun Sparcs running Solaris.
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1

Introduction

In this paper we describe a computer code HCT (Hydrodynamics, Chem-

istry, and Transport) that is capable of modeling in detail one-dimensional

time-dependent combustion phenomena of gases. The physical processes

that are modeled are chemical reactions, thermal conduction, species di�u-

sion, and hydrodynamics.

HCT is currently implemented on the CDC 7600 at Lawrence Livermore

Laboratory. On this machine, a typical practical problem might involve 20

chemical species and 50 elementary reactions with rates of the Arrhenius

form. Such a time-dependent calculation would be expected to require 10

minutes of computer time. Several sample problems are described in this

report to illustrate the capabilities of the code.

There are several considerations that govern the most e�ective way of

writing down di�erence equations to describe such problems. The �rst is

that the concentrations of species change on a timescale long compared to

sound transit times across the grid. Physically, this is because chemical

reactions proceed at a rate that is slow compared to the rate of collisions

in the gas. Similarly, thermal conduction is slow compared to sound tran-

sit times. These considerations make it advantageous to look at implicitly

di�erenced hydrodynamics equations. Implicitly di�erenced equations have

the property that they give the equilibrium con�guration solution when a

timestep �t is used that is long compared to sound transit times. They are

thus stable when the Courant condition, which limits the timestep to less

than the sound transit time across any zone, is violated. This is not true in

general for time-centered or explicit hydro di�erence equations. Of course,

if �t is large compared to the Courant �t, short timescale phenomena are

suppressed. For example, it is clear that one is not following sound signals

across the grid. However, these phenomena are not governing the evolution

of the system or else the species concentrations would be changing on the

shorter timescale.

A second factor that inuences the selection of di�erence equations is

the nature of chemical kinetics. These systems are often \sti�". Sti�ness

refers to the range of timescales in the problem compared to the timescales

1



1. INTRODUCTION 2

of evolution of the system. In chemical systems one often has subsets of

the system that are in equilibrium in such a way that any variations from

equilibrium will decay to equilibrium on a timescale very short compared

to the overall variations of the system. Again, if we di�erence the chemical

kinetics equations implicitly and use large timesteps, the solution will allow

these subsets to remain in equilibrium without having the solution become

numerically unstable.

Another physical factor a�ecting the numerical methods we chose is the

close coupling between the chemistry in one part of the uid and its e�ect

on its neighbors. Subsonic deagration phenomena, such as ames, proceed

in a medium when the reactions at one point transfer a large amount of

energy and species to their neighboring points. Accuracy depends on a

careful calculation of this interaction. Thus for a given timestep, a numerical

scheme that has the chemistry and transport terms di�erenced at the same

time can be expected to be more accurate than one in which the transport

and chemistry are solved separately and then combined.

Finally, we have written HCT to allow a description of ame phenomena

even though the length scale of the problem may vary considerably across

the grid. We have included a subroutine that determines a mesh with high

resolution in regions of high temperature gradients. Since the chemistry is

strongly a�ected by temperature, high temperature gradients usually coin-

cide with high gradients in the other physical quantities as well. The code

can then continuously update the mesh to maintain the optimum zoning as

the problem is running.

This is accomplished by writing the di�erence equations in the Lagrange

formulation and allowing a remap of the physical variables onto another

grid. It is particularly easy to write down stable Lagrangian hydro di�erence

equations, since they describe the system on a grid that moves with the uid

and thus have no advection terms. Adding a remapping algorithm allows

both Eulerian and Lagrangian calculations to be done with the same code.

If the remap routine is not called, a problem is calculated in a pure

Lagrangian manner. A pure Lagrange calculation may be the best way to

run a problem if one wishes to minimize the e�ects of numerical di�usion,

or if the problem does not have large changes in uid con�gurations.

If one desires, the remap can be chosen so that after each Lagrange cycle

the problem con�guration is mapped onto a �xed grid. This is equivalent

to the usual Eulerian calculation with a �xed grid.
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If one calls a separate routine to determine a new grid before the remap

is done, one can put the resolution where it is most needed. One then has

an Eulerian calculation with a variable grid.

Separation of the remap from the rest of the calculation also has the

advantage of simplifying the coding of di�erent remap possibilities. We

allow one remap that is �rst order in spatial separations, and two remap

schemes that are second order in separations.

The main emphasis in the code's development has been on general al-

gorithms that are as \robust" as possible. Thus while it may be possible

to design algorithms that are faster for a particular problem, it is hoped

that HCT will reliably calculate a wide variety of problems in a reasonable

amount of computer time with little or no special \tuning" for any particular

problem.
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Di�erence Equations

In this section we write down the di�erence equations solved in the La-

grange part of the calculational cycle. The manner in which the di�erence

equations reduce to the appropriate di�erential equations is shown in the

following section.

The di�erence equations are derived by considering the problem to be

divided into small cells, or zones. Writing down the conservation laws for

species and energy in these cells, and the equation of motion for the cell

boundaries, gives the di�erence equations for the system. This is basically

the control volume approach for deriving �nite di�erence equations.[1]

The cells are described by their thickness �rj . This variable has units

of centimetres. The velocity of the boundary between zone j and j � 1

is denoted vj� 1
2
. Its units are centimetres=second. The concentration of

species i in zone j is denoted by ci;j . Units of moles=cubic centimetre are

used.

The ci;j species are assumed to be ideal gases at temperature Tj . It is

assumed that the same Tj applies for all species ci;j in zone j. Temperature

has units of kelvins.

The state of the system at time t is completely speci�ed if the quantities

ci;j , Tj , �rj and vj� 1
2
are known for all i; j. We then write di�erence

equations that determine the evolution of these quantities from time t to

time t+�t.

We use the notation that unprimed quantities denote quantites evaluated

at time t, the beginning of a cycle. Prime quantities are evaluated at the

end of the cycle, time t+�t. The method of solution of these equations is

explained in a following section.

Conservation of species gives the di�erence equation

c0i;j �
�rj
�r0j

ci;j =
X
k

�tR0

i;j;k �
�t

�r0j

�
F c
i;j+ 1

2

0 � F c
i;j� 1

2

0

�
(2.1)

4



2. DIFFERENCE EQUATIONS 5

R0

i;j;k is the contribution of the kth reaction to the change of the ith species.

F c
i;j� 1

2

0 is the di�usion ux of species i through the j � 1
2
boundary.

The Ri;k term consists of a temperature-dependent Arrhenius term,

fk(T ) = AkT
bk exp(�Ea

k=RT ); (2.2)

times the appropriate species concentrations going into the reaction. (We

have dropped the zone index j in Eq. (2.2)). R is the univesal gas constant.

Ea is an activation energy. The code stores Ea in calories=mole.

For example, the reaction

a+ b! c+ d

has a rate Rk given by

Rk = fk(T )cacb; (2.3)

and gives rise to the contributions

Ra;k = Rb;k = �Rc;k = �Rd;k = �Rk:

The di�usion ux is given by

F c
i;j� 1

2

0 = �(�Di)j� 1
2

1

�r0
j� 1

2

 
c0i;j
�0j

�
c0i;j�1
�0j�1

!
(2.4)

If the Di's are the same for all species, Eq. (2.4) has the desirable property

that no mass di�uses between zones. This is seen from multiplying Eq. (2.1)

by the atomic weight Ai and summing over species.

The boundary-centered �r0
j� 1

2

is given by
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�r0
j� 1

2

=
1

2

h
�r0j�1 +�r0j

i
(2.5)

For simplicity, the (�Di)j� 1
2
term is evaluated at the beginning of the cycle,

but the other terms are evaluated at the end. The code calculates �Di at

the center of each zone and then gets boundary values by averaging:

(�Di)j� 1
2
=

1

2

h
(�Di)j�1 + (�Di)j

i
(2.6)

Di is allowed to have a power-law dependence on the total species concen-

tration ctot and T :

Di = D0
i T

�c
�
tot: (2.7)

Notice that all the terms on the right side of Eq. (2.1) are expressed as

functions of the variables at the end of the cycle. This choice is forced on

us because of the sti�ness of the kinetics terms in the problems of interest.

This sti�ness is illustrated by considering the contributions Ri;k of Eq. (2.3)

as de�ning a characteristic time �i;k through

Ri;k = fk(T )clcm �
ci
�i;k

�i;k is the timescale of variation in ci due to reaction k alone.

Neglecting di�usion and assuming �rj=�r
0

j = 1, Eq. (2.1) becomes

c0i � ci = c0i
X
k

�t

� 0i;k
(2.8)

The problem is sti� when there exits �i;k such that �t=�i;k � 1. In this

case the left side of Eq. (2.8) is neglible compared to the right side, so that

c0i is determined by the condition
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0 =
X
k

R0

i;k

That is, ci is in kinetic equilibrium, as we want.

If �i;k were evaluated using cj instead of c0j , the only term containing c0j
in Eq. (2.8) is on the left side. Slight mismatches in the large (but nearly

cancelling) terms contributing to the right side would result in very large

errors in c0i. The calculation then quickly becomes numerically unstable.

To get the rate of change of the boundary velocities, we write down

Newton's second law as

mj� 1
2

�
v0
j� 1

2

� vj� 1
2

�
= ��t

h
(P +Q)0j+1 � (P +Q)0j

i
(2.9)

mj� 1
2
is the mass associated with the j � 1

2
boundary. We take this to be

the average of the masses in zone j and j � 1,

mj� 1
2
=

1

2

"
�rj�1

X
i

Aici;j�1 +�rj
X
i

Aici;j

#
(2.10)

where Ai is the atomic weight of species i.

The pressure Pj in the jth cell is given by the ideal gas law as

Pj =
X
i

ci;jRT: (2.11)

The code carries pressure in CGS units. Q is a viscosity, which may

either be real or arti�cial. We have not in general found it necessary to

specify a Q to give stability as long as shocks are not present. The code

allows the form

Qj = ��
1

�rj
(vj+ 1

2
� vj� 1

2
): (2.12)



2. DIFFERENCE EQUATIONS 8

It is important to note that P + Q is evaluated at the cycle end time.

As �t becomes large, the left side of Eq. (2.9) becomes neglible, and the

solution to Eq. (2.9) satis�es

P 0

j�1 = P 0

j :

The code then gives the equilibrium solution at the end of the cycle.

A general statement about this implicit formulation of the hydrodynam-

ics equations is that when �t is greater than the Courant �t, it tends to

move the uid toward pressure equilibrium. Then the velocity of the uid

is not determined so much by the acceleration equation as by how far the

uid elements must move in time �t so that the system comes to pressure

equilibrium.

We can estimate when this condition is satis�ed by noting that P is on

the order of �c2, where c is the sound speed in the medium. Then the ratio

of the left side of Eq. (2.9) to the right side is of order

�r

c�t

v

c

The �rst factor is small when the sound transit time across the zone is

short compared to �t. The second factor is small when the velocity is small

compared to c.

The equation for the energy in the zone gives

h
�r0jE

0

j ��rjEj

i
+ (P +Q)0j

h
�r0j ��rj

i
= ��t

�
FE
j+ 1

2

0

� FE
j� 1

2

0

�
(2.13)

E0

j is the internal energy density in the zone, given by

Ej =
X
i

ci;j�i (2.14)
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where �i is the internal energy density of species i. Note that �i has units

of ergs=mole, while Ej has units of ergs=cm3. The code uses �fth-order

polynomial �ts in T to the JANAF data[2] for the speci�c heat at constant

pressure. The internal energy is then given by

�i = �Hi
0 +

Z
T0

ciPdT �RT (2.15)

where �Hi
0 is the enthalpy at T0.

The second term in Eq. (2.13) represents the (P + Q)dV work done in

the cycle. This term is di�erenced implicitly since the corresponding term

in Eq. (2.9) is di�erenced implicitly. The right side represents energy lost

by di�usion. There are two contributions to it, one represents the enthalpy

carried by the species di�usion, the second is the thermal conduction con-

tribution. Thus

FE
j� 1

2

0

= F T
j� 1

2

0

+ FH
j� 1

2

0

; (2.16)

where

F T
j� 1

2

0

= �
�
�TCP

�
j� 1

2

1

�r0
j� 1

2

�
T 0

j � T 0

j�1

�
(2.17)

(�TCP )j� 1
2
=

1

2

h
(�TCP

�
j�1

+
�
�TCP )j

i
(2.18)

CP =
X
i

cic
i
P ; (2.19)

FH
j� 1

2

0

=
X
i

h0
i;j� 1

2

F c
i;j� 1

2

0 (2.20)

h0
i;j� 1

2

=
1

2

�
h0i;j�1 + h0i;j

�
(2.21)
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As with F c
i;j� 1

2

0, �r0
j� 1

2

is given by Eq. (2.5). Also, the di�usion coe�cients

(�TCP )j� 1
2
are evaluated for simplicity at the beginning of the cycle. Note

that CP in Eqs. (2.17), (2.18) and (2.19) has units of ergs=degree �cm3 while

ciP in Eq. (2.19) has units of ergs=degree �mole. �T is allowed to have a

power-law dependence on ctot and T in the same manner as Di in Eq. (2.7).

Finally, the equation determining the change in �rj is

�r0j = �rj +�t

�
v0
j+ 1

2

� v0
j� 1

2

�
(2.22)
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Di�erential Equations

The set of equations (2.1), (2.9), (2.13) and (2.22), together with the

equations de�ning the various other terms in these equations, gives a set

of implicit relations de�ning c0i;j , T
0

j , �r
0

j and v0
j� 1

2

in terms of ci;j, Tj ,

�rj and vj� 1
2
. We next show that these di�erence equations reduce to the

appropriate di�erential equations in the limit (�r,�t) approach zero.

From Eq. (2.22), we get

�r

�r0
= 1��t

@v0

@x
(3.1)

as �r ! 0. Now consider Eq. (2.1) in the limit that �r, but not �t,

approaches 0.

Assume that quantities that are primed, i.e., refer to time t + �t, are

located at position x. Then the unprimed quantities are de�ned at x =

x � v0�t, since after time �t they will have moved from x to x at velocity

v0. To collect terms to order �t, quantities de�ned at x are expanded to

�rst order in �t. Thus for any quantity Y (x) we have

Y (x) = Y (x)� v0�t
@Y (x)

@x
(3.2)

Using Eq. (3.1), the left side of Eq. (2.1) becomes

c0i �

�
1��t

@v0

@x

��
ci � v0�t

@ci

@x

�

or, to �rst order in �t

c0i � ci + v0�t
@ci

@x
+�tci

@v0

@x
:

11
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We note the right side of Eq. (2.1) is already �rst order in �t. Using the

above expansion for the left side and dividing by �t, we get

Dci

Dt
= �ci

@v

@x
+
X
k

Ri;k �
@F c

i

@x
; (3.3)

where

D

Dt
=

@

@t
+ v

@

@x
(3.4)

describes the time rate of change of a quantity in the frame moving with the

uid. Equation (2.4) has the limit

F c
i = ��Di

@

@x

ci
�

(3.5)

One can easily verify that Eq. (3.3) is consistent with forms given in standard

texts such as Williams.[3]

For the acceleration equation, we let

mj� 1
2
= �j� 1

2
�rj� 1

2
(3.6)

with

�rj� 1
2
=

1

2
(�rj�1 +�rj) (3.7)

de�ne �j� 1
2
. Then taking the limit �r ! 0 and expanding to �rst order in

�t we get

v0 � v + v0�t
@v

@x
= �

�t

�

@(P +Q)

@x
:

As �t! 0 we have
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Dv

Dt
= �

1

�

@(P +Q)

@x
; (3.8)

with

Q = ��
@v

@x
: (3.9)

For the energy equation, the left side of Eq. (2.13) to �rst order in �t is

�r0
�
E 0 �

�
E � v0�t

@E

@x

��
1��t

@v0)

@x

�
+ (P +Q)�t

@v0

@x

�

Inserting in Eq. (2.13), dividing by �r0 and �t gives

DE

Dt
= � [E + (P +Q)]

@v

@x
�
@F E

@x
; (3.10)

with

F E =
X
i

hiF
c
i � �TCP

@T

@x
: (3.11)

Since it is sometimes interesting to consider T as the fundamental vari-

able rather than E , we also write out the di�erential equation for T . We

note

DE

Dt
=

D

Dt

X
i

ci�i =
X
i

�i
Dci
Dt

+ CV
DT

Dt
(3.12)

where

CV =
X
i

ci
@Ei
@T

(3.13)
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Multiplying Eq. (3.3) by �i and summing over species we get

X
i

�i
Dci
Dt

= �E
@v

@x
+
1

2

X
i

X
k

�iRi;k �
X
i

�i
@F c

i

@x
(3.14)

The double sum can be written

X
i

X
k

�iRi;k =
X
k

QkRk; (3.15)

where Qk is the energy absorbed by the reaction k proceeding at rate Rk.

For example, the reaction described by Eq. (2.3) gives

X
i

�iRi;k = � (�a + �b)Rk:

Thus

Qk = �c + �d � �a � �b

Using Eqs. (3.12), (3.14) and (3.15) in Eq. (3.10) gives

DT

Dt
=

1

CV

(
�
X
k

QkRk � (P +Q)
@v

@x
�
@F E

@x
+
X
i

�i
@F c

i

@x

)
(3.16)

If desired, the last two terms can be written to display their dependence on

the gradient in temperature. The above form is the most convenient for our

purposes.

Even though it is not used to actually update temperature, we use a

�nite di�erence analog of Eq. (3.16) to edit the sources of change in temper-

ature during the running of problems. The �nite di�erence form is derived

similarly to Eq. (3.16) but using the �nite di�erence Eqs. (2.1) and (2.13)

instead of the di�erential Eqs. (3.3) and (3.16). There is a question of the

time centering of �i when deriving the analog to Eq. (3.14). We multiply

Eq. (2.1) by �i, not �
0

i. This results in the �nite di�erence expression using

Qk calculated in terms of the �i at the beginning of the cycle.



4

Solution Technique

In discussing the method of solution for Eqs. (2.1), (2.9), (2.13), and

(2.22), it is convenient to cast the problem into the more general vector

form.

For each zone j in the problem, de�ne a vector ~xj withN+3 components,

where N is the number of species present. Let the �rst N components of

~xj be ci;j, followed by Tj, �rj and vj� 1
2
. The N + 3 component is the only

boundary-centered quantity, so placing it last in the vector can sometimes

simplify the coding.

We de�ne vectors ~fj by inserting Eq. (2.1) for each i in the �rst n com-

ponents, and Eqs. (2.13), (2.22) and (2.9) in the next three components

respectively. Transfering the right sides of these equations to the left, the

set of equations becomes the vector equation

~f 0j = 0: (4.1)

The prime on ~f 0j means that it involves terms evaluated at the end of

the cycle as well as the beginning.

We next observe that each ~f 0j component involves ~x
0

j from its own zone

j or one of its neighbors, thus Eq. (4.1) is

~fj
�
~x0j�1; ~x

0

j ; ~x
0

j+1

�
= 0:

Equation (4.1) is solved by a modi�ed Newton's iteration scheme. One

makes a guess ~xnj for ~x
0

j, expands Eq. (4.1) to �rst order in the correction, and

solves the resulting set of linear equations for the correction. We actually

solve for the relative correction

�~yj =
�~xj
~xj

(4.2)

15
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which has the advantage of being a dimensionless number. Thus let

~yj = ln~xj ; (4.3)

so that

�~xj
@ ~fi
@~xj

=
@~xj
~xj

 
~xj

@ ~fi
@~xj

!
= �~yj

@ ~fi
@~yj

@ ~fj
@~yj

is a quantity with the same dimensions as ~fj. This makes the coding

much simpler, since the derivatives are now a dimensionless multiple of the

functions themselves. Then Eq. (4.1) becomes

~fnj + �~ynj�1
@ ~fnj
@~yj�1

+ �~ynj
@ ~fnj
@~yj

+ �~ynj+1
@ ~fnj
@~yj+1

= 0: (4.4)

The superscript n means that primed quantities are evaluated using the nth

guess at their �nal values.

One notices that Eq. (4.4) is a tridiagonal matrix equation for a vector

whose components are themselves vectors. Thus let ~X be the vector whose

�rst N+3 components are ~x1, the next N+3 are ~x2, and so forth. A similar

construction gives �~Y and ~F . In matrix form Eq. (4.1) is

~F 0 = 0

and Eq. (4.4) becomes

T n�~Y n = ~F n; (4.5)

where
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T =

�����������

A1 B1

C2 A2 B2

C3 A3 B3

� � �
� � �

�����������
;

�~Y =

�����������

�~y1
�~y2
�~y3
�
�

�����������
;

and

~F =

������������

~f1
~f2
~f3
�
�

������������
:

To improve the numerical behavior of the routines used to solve the

matrix Eq. (4.5), we normalize the individual equations so that the largest

term in any equation is one. This is done by summing the absolute values

of the contributions to the right side of Eq. (4.5) whenever the matrix T n

is calculated. We then divide each row of the matrix by the corresponding

sum.

We use Gaussian elimination in the form of a standard LU decomposition

of T to solve Eq. (4.5). That is, we �nd matrices L and U such that L is

block-lower triangular and U is unit-upper triangular and

T = LU; (4.6)
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L =

�����������

D1

C2 D2

C3 D3

� �
� �

�����������
;

U =

�����������

I E1

I E2

I E3

� �
� �

�����������
:

For any ~x, L~x = ~y or U~x = ~y is easily solved. Then for Eq. (4.5)

LU �~Y = ~F

is solved by back substitution in two steps. First

L ~W = ~F

is solved for ~W , then solving

U �~Y = ~W

gives �~Y .

The algorithm[4] for performing the LU decomposition is

D1 = A1

Ek = D�1
k Bk (4.7)

Dk = Ak � CkEk�1 when k > 1:
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Note that the subdiagonal elements of L are the same as the subdiago-

nal elements of T . Of course, Eqs. (4.7) are matrix equations themselves.

When the inverse is needed in one of these quantities, an LU decomposi-

tion is done on these matrices. The routine used in this case is a standard

library routine.[5] The explicit inverse of a matrix is never actually calcu-

lated. Rather, its LU decomposition is, and when the inverse is present in

an expression we want to evaluate, the particular set of linear equations it

represents is solved.

It is interesting to point out how much work is involved in perform-

ing the LU decomposition of T . The block matrices in T are of dimension

M = N +3. The order of the number of operations to do one LU decompo-

sition of an M -by-M matrix is M3. This is also the order of the number of

operations to multiply two matrices together. Thus the evaluation of Dk in

Eqs. (4.7) is order M3. To evaluate Ek involves two order-M
3 operations, a

LU decomposition of Dk and the solution of the M vector equations needed

to get the M columns of Ek. Thus we are doing a total of three order-M3

operations for each zone. If our original matrix T were block diagonal, we

would be doing one order-M3 operation per zone to solve the system. Thus

to couple the nearest neighbors in our di�erence scheme has made roughly

a factor-of-three di�erence in the time needed to solve one cycle.

Our system would have been block diagonal if we had operator-split the

chemistry from the hydrodynamics. In general, we expect to pick up more

than a factor of three in timestep by going from an operator-split scheme to

a fully coupled scheme. This has been con�rmed in actual calculations.

Once we have calculated the LU decomposition of T n in Eq. (4.5), calcu-

lating the components of �~Y n becomes a matter of adding di�erent multiples

of the components of ~F n together. One can look on Eq. (4.5) as a prescrip-

tion for �~Y n in terms of a weighted sum of elements of ~F n. In particular,

if one used other matrices T' that didn't di�er much from T n, one would

expect to have an iterative scheme that also would be satisfactory. In solv-

ing Eq. (4.5), the LU decompositon is the most expensive operation, being

order M more expensive than solving the system by back substitution. To

save computer time we will �rst try to solve Eq. (4.4) using the last available

Tm. That is, we solve

Tm �~Y n = ~F n (4.8)



4. SOLUTION TECHNIQUE 20

to get a new �~Y n. If this �~Y n appears to be converging to zero, we continue

to use the last available Tm without doing more LU decompositons of the

full system.

We assume ~Y has converged if

maxf�Yig < �; (4.9)

where � is typically 10�6. It is not clear how small � must be for stability

or accuracy, and it may be possible to use considerably larger � in many

problems.

In the case of velocity, requiring

�vn
j� 1

2

vn
j� 1

2

< �

may be unreasonable. As pointed out previously, if the system is in pressure

equilibrium, vj� 1
2
�t is the distance the boundary between zones j�1 and j

has moved to maintain pressure equilibrium. If the resolution of �rj�1 and

�rj is �, then it is more reasonable just to assure that

�vj� 1
2
�t < � �minf�rj�1;�rjg: (4.10)

In fact, additional resolution in �vj� 1
2
can be lost in in machine roundo�,

since the code calculates �vj� 1
2
as a di�erence between �rj�1 and �rj . We

use Eq. (4.10) to determine convergence in velocity.

There is another anomaly associated with velocity. It is the only variable

in ~X that can physicaly be zero. Using zero in Eq. (4.2) causes the computer

to try to divide by zero. Thus when any guess vn
j� 1

2

is zero, we make vn
j� 1

2

�nite by using

vn
j� 1

2

�t = �r�r
n
j ; (4.11)
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where �r � � is on the order of machine roundo�. if v0
j� 1

2

is truly zero, this

will result in a �vn
j� 1

2

that satis�es Eq. (4.10), and thus does not a�ect the

convergence test.

It will sometimes happen that the solution of Eq. (4.5), the linearized

version of Eq. (4.1), will predict a xn = ci;j, Tj or �rj that is zero or negative.

We know from physical considerations that these quantities should never be

negative or zero. If

xn+1 = xn
�
1 +

�xn

xn

�
(4.12)

predicts xn+1 � 0, we use

xn+1 =
xn

1�
�xn

xn

(4.13)

Equations (4.12) and (4.13) are identical to �rst order in �xn=xn. This

procedure guarantees the use of physically acceptable xn. If this is not done

it is possible to �nd mathematically correct but nonphysical solutions to

di�erence equations. This occurs because these equations are nonlinear.

The initial guess at x0 is made from a second-order �t in �t to the past

history. The past history is saved in the form of Newton's interpolating

polynomials so that

x(t) = [x0] + (t� t0) [x0; x�1] + (t� t0)(t� t�1) [x0; x�1; x�2] (4.14)

where

[x0] = x(t0)

[x0; x�1] =
[x0]� [x�1]

t0 � t�1

[x0; x�1; x�2] =
[x0; x�1]� [x�1; x�2]

t0 � t�2
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In all variables except velocity, a check is made to see if the second-order

polynomial gives a negative interpolation. If it does, a �rst-order interpola-

tion is tried. If that is also negative, an interpolation analogous to Eq. (4.13)

is used.

To determine whether a new LU decomposition of T is needed, a check

is made on the rate of convergence by calculating a norm

k�~Y nk =
X
m

(�Y n
m)

2 ; (4.15)

where the index m runs over all �Ym that have not converged. For m corre-

sponding to velocity components, Eq. (4.10) suggests we use

�Ym =
�vj� 1

2
�t

minf�rj�1;�rjg
(4.16)

If an iteration using an old Tm in Eq. (4.8) satis�es

k�~Y nk > k�~Y n�1k;

we suspect that the old Tm has moved us away from, rather than toward,

the true solution. In that case, we discard �~Y n, let ~Y n+1 = ~Y n, and update

the matrix Tm for the next iteration.

If

k�~Y nk > fk�~Y n�1k; (4.17)

where f is some input fraction of 1, we update ~Y n+1 using �~Y n but require a

new LU decomposition of T for the next iteration. We argue that although

the iterations are converging, we expect a much faster rate of convergence

with a new T . f is typically a number like 1/4.

Finally, we allow an old LU decomposition of T to be used no more than

a �xed number of times. It occasionally happens that the iterations will
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converge, but on an incorrect solution to the true equations. This maximum

number of uses of an old Tm is usually set at problem generation to some

number like 20.

At generation we also specify the maximum number of iterations allowed

to solve Eq. (4.1). If the iterations do not converge in this number of it-

erations, we decrease the timestep �t by a factor of 2 and start the whole

cycle over. This can happen when there is a sudden change in the prob-

lem, as in the onset of rapid burn. In that case the linearized Eq. (4.5)

di�ers considerably from the nonlinear Eq. (4.1). The maximum number

of iterations allowed can vary with the problem and with the frequency at

which the LU decompositon is updated. For a complicated problem that is

averaging 5 or so iterations per cycle, a maximum of 20 iterations per cycle

is not unreasonable, especially if one is using old LU decompositions most

of the time.



5

Eulerian Calculations

HCT can do a remap of variables de�ned on one grid so that they are

de�ned on a second. An Eulerian calculation is done by remapping back onto

a �xed grid after each cycle. Thus the grid remains the same throughout

the calculation. The grid can also be determined dynamically throughout

the problem by a method that will be described later. Since this remapping

determines how much material moves from one zone to another during a

cycle, it corresponds to the advection terms of the Eulerian formulation.

The remap is limited in the sense that each zone of the original grid must

overlap the corresponding zone in the new grid. This means that the new

boundary at j � 1
2
between zones j � 1 and j must be in either the original

zone j-1 or zone j. Let �rj be the zone width of the jth zone in the original

grid. Then let �r0j be the zone width of the jth zone in the new grid. Then

�r0j = �rj +�xj+ 1
2
��xj� 1

2
; (5.1)

where �x is the distance a boundary is to be moved.

There are two types of quantities that are to be remapped: zone-centered

and boundary-centered quantities.

For any zone-centered quantity yj, Eq. (5.1) implies

�r0jy
0

j = �rjyj +�xj+ 1
2
yj+ 1

2
��xj� 1

2
yj� 1

2
(5.2)

We are left, then, with the choice for yj� 1
2
. This choice determines the

formal order of accuracy of the remap.

Note that Eq. (5.2) will conserve the integral of y across the grid (except

possibly at boundaries). Since energy should be conserved by the remap

rather than temperature, temperature is determined implicitly after the

remap of energy.

24
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The choice of lowest order accuracy is to take yj� 1
2
equal to the value of

yj in the zone �xj� 1
2
overlaps. This gives �rst-order accuracy, and in many

situations gives rise to large amounts of numerical di�usion. This choice is

sometimes called donor cell or upwind di�erencing, since the quantity being

advected into a zone has its value determined by the zone from which it

comes. This choice can be written

yj� 1
2
=
h
1� �j� 1

2

i
yj�1 + �j� 1

2
yj ; (5.3)

where

�j� 1
2
=

1

2

0
@1 + �xj� 1

2����xj� 1
2

���
1
A (5.4)

is either 0 or 1.

Second-order accuracy can be obtained by interpolating yj� 1
2
between

yj�1 and yj. Thus

yj� 1
2
=
h
1� �j� 1

2

i
yj�1 + �j� 1

2
yj; (5.5)

with

�j� 1
2
=

2

�rj�1 +�rj

�
1

2
�rj�1 + ��xj� 1

2

�
(5.6)

The term proportional to � gives a degree of \upwindness" to the weighting.

We use � = 1, since for this choice �j� 1
2
= 1 if �xj� 1

2
= �rj=2.

With second-order remaps it is possible to advect more out of a zone

than was present in the beginning, giving rise to negative densities. This

occurs because the remap takes yj� 1
2
�xj� 1

2
out of a zone containing yj�rj,

when it is possible that yj� 1
2
� yj. We perform a check to see if this is

going to happen, and if it is we do a �rst-order remap of this quantity.
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It turns out that in combustion problems some of the ci;j have very

large gradients, often changing an order of magnitude or more from zone to

zone. In such a circumstance, neither the �rst-order remap nor the second-

order one described above is adequate. This shows up in the running of

a problem when the Lagrange cycle changes are nearly cancelled by the

following remap. The problem is that these remaps associate too large a

quantity with the boundary. For this case we have another choice that

averages inverses of yj to get yj� 1
2
. Thus

1

yj� 1
2

=
1� �j� 1

2

yj�1
+
�j� 1

2

yj
(5.7)

This expression has second-order accuracy when yj�1 is nearly equal to yj,

since Eq. (5.7) gives

yj� 1
2
=
h
1� �j� 1

2

i
yj�1 + �j� 1

2
yj

plus terms of order (yj � yj�1). But it has the advantage that it takes yj� 1
2

to be the minimum of yj�1; yj rather than the average when there are large

gradients.

For the �rst-order remap, the total zone energy is remapped in the same

manner as the species concentrations. For the second-order remap de�ned

by Eq. (5.5), we map over the energy carried by each species separately.

That is, we write

(ci�i)j� 1
2
=
h
1� �j� 1

2

i
(ci�j)j�1 + �j� 1

2
(ci�i)j (5.8)

This is done so that if we drop to �rst order in any one species, the corre-

sponding fraction of the zone energy will be mapped over correctly.

For the remap de�ned by Eq. (5.7) we need an average energy associated

with (ci)j� 1
2
. We de�ne

(�i)j� 1
2
=
h
1� �j� 1

2

i
(�i)j�1 + �j� 1

2
(�i)j (5.9)
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and then use

(ci�i)j� 1
2
= (ci)j� 1

2
(�i)j� 1

2
: (5.10)

This gives a minimum ci but associates it with the temperature at the bound-

ary.

With the total energy and species concentrations of the zone determined

from Eq. (5.2), we next determine the new temperature that gives that

energy. This gives the new temperature to be associated with the new grid.

Velocity is the only boundary-centered quantity to be determined. Since

momentum is a conserved quantity associated with velocity, we remap mo-

mentum, where

pj� 1
2
= mj� 1

2
vj� 1

2
(5.11)

and mj� 1
2
is given by Eq. (2.10). The analogue of Eq. (5.2) is

�r0
j� 1

2

p0
j� 1

2

= �rj� 1
2
pj� 1

2
+�xjpj ��xj�1pj�1 (5.12)

where the only di�erence is in the centering of these terms. We take

�rj� 1
2

=
1

2
f�rj�1 +�rjg (5.13)

�xj =
1

2

n
�xj� 1

2
+�xj+ 1

2

o
(5.14)

For the �rst-order remap we have

pj = [1� �j ] pj� 1
2
+ �jpj+ 1

2
(5.15)

with
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�j =
1

2

 
1 +

�xj
j�xjj

!
: (5.16)

�xj is given in terms of the fundamental �xj� 1
2
by Eq. (5.14).

For the second-order remap we write

pj = [1� �j ] pj� 1
2
+ �jpj� 1

2
(5.17)

with

�j =
1

�rj

�
1

2
�rj� 1

2
+ ��xj

�
; (5.18)

where �rj� 1
2
and �xj are given by Eq. (5.13) and Eq. (5.14).

With momentum we do not allow the second-order remap for pj� 1
2
im-

plied by Eq. (5.7), since there are not usually such large gradients in velocity

present. Equation (5.7) is only needed for quantities that vary by an order

of magnitude or so from zone to zone, and only then if the physics tends to

negate the remap changes in the next Lagrange cycle.
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Dynamic Rezoning

HCT has a option for determining �r0j dynamically in such a way as to

concentrate zoning in areas of high temperature gradients. High tempera-

ture gradients are associated with high rates of energy release. High rates of

energy release are also associated with rapid changes in species concentra-

tions. Thus this option will usually result in better resolution of the entire

problem.

The grid spacing is determined by the choice of �xj� 1
2
in Eq. (5.1). In

a normal Eulerian calculation with a �xed grid one chooses

�xj� 1
2
= �v0

j� 1
2

�t: (6.1)

This just moves the grid back to the spacing that existed before the

Lagrange calculation.

To place zoning where the temperature gradient is large, we could choose

�xj so that

�
�r

@T

@x

�
j

= j�Tj j = constant:

However, this would result in unusually large zones where @T=@x is small. In

general, we want to satisfy this condition where gradients are large, but have

the zoning grow slowly as we move away from high-gradient regions. To do

this we impose the additional constraint of minimizing zone-size mismatches

across the grid.

We formulate the problem as follows: Let y(x) be a continuous func-

tion whose value at xj is the desired zone thickness there. Let f(x) be

proportional to the absolute value of @T=@x, and let

z = yf = �y
@T

@x
(6.2)

29



6. DYNAMIC REZONING 30

where � is a constant. Then the problem is to determine y such that

I(y) =

Z
L

dx

y

n�
y0
�2
+ z2

o
(6.3)

y0 =
dy

dx

is a minimum subject to the constraint

N =

Z
L

dx

y
(6.4)

Equation (6.4) just requires that there be N zones in the grid. Since dy=dx

is the zone mismatch between adjacent zones, minimizing the contribution

of the �rst term in Eq. (6.3) minimizes zoning mismatches across the whole

grid. Minimizing the contribution of z2 to I(y) will keep y small in regions

of large temperature gradients. The proportionality constant � in Eq. (6.2)

is chosen so that

y

����dTdx
����
max

=
1

N�

Z
L
dx

����dTdx
���� (6.5)

Thus N� is the minimum number of zones reserved to describe the temper-

ature change across the grid.

The problem of minimizing I(y) subject to Eq. (6.4) is solved using the

Euler-Lagrange equations. We make the change of variables

y = w2 (6.6)

so that the resulting di�erential equation has no �rst-derivative terms. The

Euler-Lagrange prescription gives[6]

w00 +
1

4

n
�� z2

o 1

w3
= 0; (6.7)
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with the boundary conditions

w0(0) = w0(L) = 0 (6.8)

� is chosen to satisfy Eq. (6.4).

Equations (6.7) and (6.4) represent a nonlinear eigenvalue problem. If

Eq. (6.7) were linear, its solution would present no di�culty. This suggests

we assume a reasonable �rst guess for w0, �0, linearize Eq. (6.7) about this

guess, and solve for the correction. Let Eq. (6.7) be written as

F (w00; w; �) = 0: (6.9)

Linearizing gives

L�w = �F0 �
@F

@�
��; (6.10)

�w0(0) = �w0(L) = 0;

with

L �
@F

@w00

@2

@x2
+
@F

@w
(6.11)

L is a linear operator. We have assumed w0 satis�es the boundary condtions

of Eq. (6.8).

The solution

�w = �L�1
�
F0 +

�F

��
��

�
(6.12)

depends on ��. This allows us to choose �� so that the constraint, Eq. (6.4),

is satis�ed, i.e.

Z
dx

w3
0

�w = �

Z
dx

w3
0

L�1
�
F0 +

@F

@�
��

�
= 0

implies

�� =

�
R dx

w3
0

L�1F0

R dx

w3
0

L�1
�F

��

(6.13)

We have assumed that w0 already satis�es Eq. (6.4).
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This method should work well when �w is small compared to w. To

allow for the possibility that �w is large, we want a method that insures �w

is small, and allows us to arrive at the solution to Eq. (6.7) by a series of

small corrections to the latest values of w. Let us parameterize the small

changes in w by the change in another parameter �. Let

�w(x; �) =
@w(x; �)

@�
��; (6.14)

where, by de�nition, �� = 1 gives the �w of Eq. (6.10). From Eq. (6.12) �w

is proportional to F0 and @F=@���. Replace F0 by F0�� and let

��(�) =
@�(�)

@�
��: (6.15)

Then the right side of Eq. (6.12) can be made as small as desired. Replacing

Eq. (6.10) we have

L
@w

@�
= �F0 �

@F

@�

@�

@�
(6.16)

@w0(0; �)

@�
=
@w0(L; �)

@�
= 0;

which can be used to update w for arbitrarily small �� using

w(x; �) = w0(x) +

Z �

0
d�0

@w(x; �0)

@�0
(6.17)

@�=@� is evaluated by the generalization of Eq. (6.13):

@�

@�
=
�
R dx

w3
L�1F0

R dx

w3
L�1

�F

��

(6.18)

Then

�(�) = �0 +

Z �

0
d�0

@�(�0)

@�0
(6.19)

gives � for any �.

Note that Eqs. (6.16) and (6.11) give

@F

@w00

@w00

@�
+
@F

@w

@w

@�
+
@F

@�

@�

@�
�
dF

d�
= �F0: (6.20)
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Integrating over � give

Z �

0
d�0

dF (�0)

d�0
= F (�)� F0 = ��F0:

This solves Eq. (6.9) when � = 1. This shows that Eqs. (6.16), (6.17), (6.18)

and (6.19) provide a generalization of the one-step linearization procedure

represented by Eqs. (6.10) and (6.13).

In discrete form we write Eq. (6.16) as

Ln
@wn+ 1

2

@�
= �F0 �

@F n

@�

@�n+
1
2

@�
(6.21)

where n indicates the successive values of �, i.e.

�n+1 = �n +��n+
1
2 ; (6.22)

and Eqs. (6.17) and (6.19) give the prescription for updating wj and �.

wn+1
j = wn

j +
@w

n+ 1
2

j

@�
��n+

1
2 ; (6.23)

�n+1 = �n +
@�n+

1
2

@�
��n+

1
2 (6.24)

The index j on wn
j denotes the spatial zoning. Thus in Eq. (6.21) L, F0 and

@F n=@� are evaluated using the last available wj and �, and Eqs. (6.23) and

(6.24) are used to update wj and � for the next cycle.

We use the obvious discrete form of the second derivative of w in L, i.e.

@2

@x2
@wj

@�
=

1

�rj

(
@

@x

@wj+ 1
2

@�
�

@

@x

@wj� 1
2

@�

)
(6.25)

Except at the problem boundaries, where the boundary conditions of Eq. (6.16)

apply, one has

@

@x

@wj� 1
2

@�
=

1

�rj� 1
2

�
@wj

@�
�
@wj�1

@�

�
(6.26)

where �rj� 1
2
is given by Eq. (3.7). The second-derivative operator in L is

the only part connecting adjacent spatial zones. Thus in discrete form L
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is a tridiagonal matrix and L�1 is evaluated using the LU decomposition

algorithm of Eqs. (4.7).

To evaluate f(x) in Eq. (6.2), the temperature distribution is tabulated

and the derivative of the table used. We �rst de�ne

dT

dx
=

����dTdx
���� (6.27)

through

Tj = Tj�1 + jTj � Tj�1j (6.28)

and then de�ne T at the boundaries by

Tj� 1
2
=

1

2
fTj�1 + Tjg : (6.29)

The numerical procedure for updating the grid then consists of the fol-

lowing steps:

First the temperature distribution is used to de�ne T on the existing

zone boundaries. The initial guess at w is taken as

(w0)j = (�rj)
1
2 :

One uses an initial value for � and � from the last cycle. The operator L
can then be evaluated and Eq. (6.21) solved for @w=@�. One calculates a ��

that changes w(x) by no more than a �xed number, typically 0.05. Then w,

� are updated using Eqs. (6.23) and (6.24).

At this point the mesh is rede�ned in such a way thatZ
�r0j

dx

w2
=

1

N

Z
L

dx

w2
(6.30)

�r0j is the new mesh spacing. This is done with the conservative �rst-order

remap of Eqs. (5.3) and (5.4), 1=w2 being the conserved quantity. This is

done so that if w is changing rapidly as a function of �, the grid will always

de�ne w accurately. A conservative remap is done so that the new mesh will

represent the same number of zones as the old.

This cycle is repeated until � = 1. Because of errors introduced by the

discrete form of the original di�erential equations, errors have been intro-

duced in w. We iterate the whole procedure again until the current iteration
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agrees with the last iteration to within a convergence factor, currently 0.01.

Between each iteration w is normalized so that Eq. (6.4) is satis�ed.

Once one has w and � for a �xed �, one can correct � so that Eq. (6.5)

is satis�ed. In analogy to Eq. (6.12) one gets

�w = �L�1
�
@F

@�
+
@F

@�

@�

@�

�
�� (6.31)

where @�=@� is chosen to satisfy Eq. (6.4).

To do this, we need the location where jdT=dxj is a maximum. We �nd

the zone which has the largest jdT=dxj and �t jdT=dxj with a second-order

polynomial through the value in this zone and its neighbors. We assume the

zone values de�ne jdT=dxj at the centers of the zones. Thus if f = jdT=dxj
we have

f =
(x� x2)(x� x3)

(x1 � x2)(x1 � x3)
f1 + � � � ; (6.32)

or

f = (x� x2)(x� x3)�1f1 + � � � (6.33)

Actually, if jx is the zone with the largest value of jdT=dxj, we let

x1 = �(�jx�1 +�rjx)

x2 = 0 (6.34)

x3 = �rjx +�rjx+1

This implies spacing that is twice the actual grid spacing, but the factors of

2 drop out in the quantities we want.

The x for which the polynomial is maximum is given by

x =
(x2 + x3)�1f1 + (x1 + x3)�2f2 + (x1 + x2)�3f3

2 (�1f1 + �2f2 + �3f3)
(6.35)

Since the same coe�cients of Eq. (6.33) de�ne the polynomial �t to any

zone-centered grid quantity, we can calculate the e�ect a change �w in w

will make in

y

����dTdx
����
max

= (x� x2) (x� x3)�1
�
w2
1 + 2w1�w1

� ����dTdx
����
1

+ � � � (6.36)
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The terms proportional to �w are the correction terms. From Eq. (6.31)

�w is proportional to ��. �� is chosen so that �w will change Eq. (6.36) to

satisfy Eq. (6.5).

One could iterate the procedure to get the exact value of � desired at that

time, but in practice we calculate what � should be and only add a fraction

(typically 0.1) of �� to the current value. Thus after around 10 cycles �

approaches the desired value. We do not completely correct � because the

polynomial �t to jdT=dxj does not correspond to an exact description of the

temperature, and thus there is some variation in the calculated � as the

high-gradient region moves through a zone.

We also use this method to initialize the grid at the beginning of the

problem to match an initial nonuniform variable distribution. In that case

f(x) may be known exactly. It is not necessary to have the original estimate

of the zoning accurately known for the iteration procedure to converge if the

average value of f over the zone is used whenever the zone centered value

of f is needed. Thus

fj =
1

�rj

Z x
j+1

2

x
j� 1

2

dx f(x): (6.37)

For example, if f = jdT=dxj one uses

fj =
1

�rj

���T (xj+ 1
2
)� T (xj� 1

2
)
���

rather than fj = jdT (xj)=dxj. This will allow f to reect discontinuities in

T even if the grid is not initially chosen to reect them.
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Kinetics Calculations

HCT reads reaction data from a disk �le CDAT at the initiation phase

of each problem. The constants associated with each reaction are stored

in this �le. As currently implemented, HCT uses the collection of data

maintained by Westbrook and Chase,[7] which also includes the �ts to the

thermodynamic data.

The reactions in CDAT are classi�ed into standard forms or types, which

can be one of the following:

a + b $ c + d, I

a + b $ c + c, II

a + M $ M + b + c, III

a + M $ M + b + b, IV

a $ b + c, V

a $ b + b, VI

a $ b, VII

a + M $ b + M, VIII

a $ b + c + d, IX

a + b ! b + d + d, X

a + b ! c + d + e, XI

a ! b + c + c, XII

a ! b + c + d + d, XIII

a ! b + c + d + e, XIV

a + a ! b + c + c, XV

a + a ! b + c + d, XVI

where a, b, c, d, and e represent di�erent species. M represents any other

species. Speci�c coding is written for each type of reaction. This allows the

fastest possible coding to be used for each. Each reaction listed actually

includes both the forward and reverse reactions.

As pointed out earlier, each reaction rate is calculated as the product of a

temperature-dependent term times the appropriate reactant concentrations,

i.e.

Rk = fk(T )
Y
i

ci; (7.1)

37
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where

fk(T ) = AkT
bk exp(�Ea

k=RT ): (7.2)

The terms Ak, bk and Ea
k , as well as the indices of the species going into

and coming out of the reaction are stored in the disk �le CDAT.

From Eq. (2.1) we see that these reaction rates are evaluated implicitly

in terms of T 0

j and c0i;j , the values at the end of the computational cycle.

This choice prevents c0i;j from being negative. This is true of all quantities

except

ctotj =
X
i

ci;j; (7.3)

which corresponds to M in reaction types III and IV. ctotj is evaluated ex-

plicitly to simplify the coding, since there is no possiblility that a species

will become negative as a result of this choice.

It sometimes happens that one will be using a rate from CDAT in a

temperature range where the coe�cients Ak, bk or Ea
k are inappropriate.

This often happens for the activation energy Ea
k of a reverse rate. These

may be negative in order to have the correct equilibrium with its forward

rate in a given temperature range. Since the rate depends exponentially on

Ea
k , it can be shown to result in rates much too large outside the temperature

range for which it was derived. This can cause numerical di�culties since

a calculation will require more cycles to follow the rapid changes in species

a�ected by this rate.

The code allows a maximum rate Rmax to be speci�ed and then uses

Reff
k =

RmaxRk

Rmax +Rk
(7.4)

instead of Rk in the actual calculation

For two-body reactions the code uses

Rmax = k1cacb; (7.5)

where k1 is an input constant. For three-body reactions involvingM , ca and

cb we also use

Rmax = k1cacb: (7.6)

In this case we argue that a three-body reaction is limited by its slowest

two-body partial reaction.
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The forward parts of reaction types V and VI represent spontaneous

decays. The code uses

Rmax =
1

�1
ca; (7.7)

where �1 is an input constant.

In addition to the speci�c forms I-XVI, the code allows the user to specify

arbitrary reactions of the form

a+ b+ � � � ! u+ v + � � � (7.8)

where either

Rk = fk(T )
Y
m

c�mm ; (7.9)

or

Rk = fk(T )ctotc
�m
m :

The cm in Eq. (7.9) need not be the ci appearing in Eq. (7.8), and are raised

to the �m power in calculating Rk. fk(T ) still has the same form as in

Eq. (7.2). The rate-limiting combination for Reff
k is not used.
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Boundary Calculations

The code carries an extra dummy zone at each end of the grid to handle

boundary conditions. The values assigned to the variables describing the

dummy zone are set so that the desired boundary conditions are automati-

cally satis�ed. Thus there exists a relation of the form

~yB = ~g(~yJ); (8.1)

where ~yB is the vector of boundary variables and ~yJ is the vector of the

neighboring real zone variables. Thus

�~yB = �~y
@~g

@~yJ
(8.2)

and for the last real zone Eq. (4.4) becomes

~fnJ + �~yJ

�
@g

@~yJ

@

@~yB
+

@

@~yJ

�
~fnJ + �~ynJ�1

@ ~fnJ
@~yJ�1

= 0: (8.3)

Thus the equation for zone J couples only its own variables with its one

neighboring real zone.

The general procedure is that at the beginning of the calculational cycle

the boundary variables are set using Eq. (8.1). Then the vector ~F n and

T n (if required) of Eq. (4.5) are calculated for the real zones next to the

boundary just as for interior zones. If T n is calculated, a subroutine is

called that combines the coe�cients of �~yB with the coe�cients of �~yJ as

implied by Eq. (8.3). For a �xed boundary Eq. (8.1) becomes

ci;B = ci;J

TB = TJ (8.4)

vB = 0

The �rst two relations insure that the pressure gradient across that boundary

is zero, and thus the boundary will not accelerate. We also insure that

nothing di�uses across the boundary by choosing

(Di)B = 0 (8.5)�
�T
�
B

= 0

40
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although this is redundant if the gradients are zero.

Recall that the vector ~xj contains the variable vj� 1
2
. Thus at the lower

boundary solving Eq. (4.5) solves an equation for vB. At j = jmax the

v associated with ~xjmax is between zones jmax and jmax � 1, not at the

boundary. At j = jmax vB is obtained directly from Eq. (8.1).

At j = 1 setting vB = 0 gives troubles in de�ning �vB=vB . In this case

we substitute the equation

vB = 0 (8.6)

for Eq. (2.9) after the elements of ~F n and T n have been �lled in the usual

way.

For an open boundary we assume that the dummy zone is at a pressure

PB and choose

ci;B = �ci;J (8.7)

TB = TJ

where � is a proportionality coe�cient chosen so that

PB =
X
i

ci;BRTB: (8.8)

Clearly,

� =
PB
PJ

(8.9)

Equations (8.7) insure that there is no di�usion of species or thermal conduc-

tion into the dummy zone. This is also guaranteed by enforcing Eqs. (8.5).

Equation (2.9) then gives the velocity at the boundary, where the vis-

cosity Q is taken to be zero in the dummy zone.

If a calculation is dynamically adjusting its grid size, we use a di�erent TB
in the rezoning algorithm. If TB = TJ the rezoning algorithm would make

�rJ too large, because it would assume no gradient between the dummy

zone and the �rst real zone. Instead we �t the temperature in the �rst

two real zones to a second-order polynomial in x that has zero slope at the

boundary. We then choose TB so that Eq. (6.29) gives the polynomial's

value at the boundary. This gives

TB = TJ +
2

� (2 + �)
(TJ � TJ�1) ; (8.10)
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where

� =
�rJ +�rJ�1

�rJ
(8.11)
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Energy Sources

To add energy to a problem, HCT has a separate routine that calculates

a source deposition rate for each zone. This source rate can be speci�ed as

either a source per unit volume or a source per unit mass. The routine adds

the energy as an additional term on the right side of Eq. (2.13). If the rate

is given per unit volume, the additional term is

�Esj = �t

Z
�rj

dxSvol: (9.1)

If the rate is given per unit mass, the appropriate term is

�Esj = �t�j

Z
�rj

dxSmass: (9.2)

Note that for simplicity either term is evaluated explicitly in terms of the

quantities at the beginning of the cycle.

The e�ect on the corresponding di�erential equations is to add either

Svol or �Smass to the right side of Eq. (3.14). These terms are divided by

CV if added to the right side of Eq. (3.16).

The integrals in Eqs. (9.1) and (9.2) are done exactly, assuming that Ss

is distributed in space according to

Ss = Ss0
1

1 + exp

�
x� x0

�x

� (9.3)

where Ss0 is a constant. The superscript s refers to either a source per unit

volume or a source per unit mass. The integrals are done exactly so the step

in Eq. (9.3) will be accurately taken into account even if �rj is much larger

than �x.

The form chosen for Eq. (9.3) allows one to specify a source that is nearly

constant from x = 0 to x = x0, with a decay to 0 over a distance �x. A
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point source at x = 0 is speci�ed by choosing x0 = 0 and making �x small.

�x is usually chosen large enough to keep the source from changing abruptly

from one zone to the next.

The integrals in Eqs. (9.1) and (9.2) are evaluated using

I(x) =

Z
dx

1

1 + ey
= x��xln(1 + ey); (9.4)

y =
x� x0

�x

Then Z
�rj

dx
1

1 + ey
= I(xj+ 1

2
)� I(xj� 1

2
):

Since y appears in the exponential, evaluating Eq. (9.4) can cause ma-

chine overow when y is large. This often happens, since y varies inversely

with �x. To avoid this, we use the �rst term of the asymptotic expansion

I(x) = x0 ��x
�
e�y + :::

�
; (9.5)

when x is a large positive number. Similarly, if x is large but negative, we

use the �rst term of

I(x) = x��x(e�jyj + :::): (9.6)

Currently asymptotic values are taken if jyj > 100.

Using Eqs. (9.4), (9.5) we get

Z
1

0
dx

1

1 + exp

�
x� x0
�x

� = x0 +�x ln

�
1 + exp

�
�
x0

�x

��
: (9.7)

This allows one to calculate the total energy source rate if Eq. (9.1) is used.

The source rate can be applied from time t = 0 up to some speci�ed time

t = tig in the current version of the code.

If the calculation is dynamically adjusting its zone size when the source

is being applied, we no longer assume in the rezoning algorithm that the
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temperature at the problem boundary has zero slope. Rather, we linearly

extrapolate the temperature in the �rst two real zones to the boundary, and

choose TB so that Eq. (6.29) is consistent with this value. Equation (8.10)

is replaced with

TB = T1 +
2

�
(T1 � T2) (9.8)

at the x = 0 boundary.
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Calculational Cycle

In this section we describe how the code that solves the di�erence equa-

tions is used to solve a particular physical problem.

The underlying principle is to have the main code act as a black box

which, given the parameters describing a particular situation, integrates

the equations of motion and provides edits of the problem as it is running.

Thus initially the main code itself does not contain any information about

a particular problem. The data describing a problem is read from an input

�le on disk. The input �le contains all the parameters necessary to describe

the physical problem, plus parameters that indicate how the problem is to

be run. It also contains lists of species and reactions to be used. Appendix

A gives a complete glossary of the variables that may be set in the input �le.

The data to describe the physical constants associated with each species and

each reaction exists in a separate disk �le CDAT.

The input �le also indicates how frequently to edit the problem. These

edits are the only way that the code produces output for the user. There

are currently six edits, each giving a di�erent kind of information about the

problem. These edits are called independently of each other.

The �rst is an edit of general zone quantities. Position, size, velocity, to-

tal species concentration, density, temperature, pressure, and rates of energy

production are printed for each zone.

A second edit provides a list of the mole fraction of each species in each

zone of the problem.

A third edit gives a (complete or partial) listing of the rates of reactions

in (some or all of) the calculational zones.

A fourth edit provides a list of the total relative change of each physical

variable in that timestep.

The above four edits are Lagrange edits, i.e., they provide a picture of

how the problem is changing in the Lagrange part of the calculation. Calling

the fourth edit automatically gives an edit of the total change due to the
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variable remap if an Eulerian calculation is being done. This gives one a

method for estimating the change at a point due to advection.

A �fth edit is used for debugging purposes. It gives a listing of how

the variables change during the iterations in the solution of the nonlinear

equations of motion.

The sixth edit acts as a dump routine. This routine writes all the physical

variables into a binary disk �le at selected cycles. These dumps, together

with the original input deck, contain su�cient information to restart the

problem at one of the selected cycles. The dumps also contain su�cient

data for input to a graphics program that is used in a postprocessor mode.

At the start of a problem, the main code calls the subroutine SETUP.

SETUP reads an input deck and echoes it to the printer. Then SETUP calls

the routine EOSDAT, which reads the data for the appropriate species and

reactions from the disk �le CDAT and stores it in the code's common blocks.

SETUP may also call routines to initialize the data in a way determined from

the input deck. If the input calls for restarting from the dump of a previous

run, SETUP calls the routine RDUMP to read the initial values from the

dump �le.

The main code then loops through the following sequence of operations

for each calculational cycle:

First it checks to see if edits are called during this cycle. If they are, it

sets ags that will cause the appropriate edit routines to be called during

the cycle.

Next, the main code calls CALCOEF. This routine calculates all the

coe�cients that are held �xed during the cycle, such as the energy source

terms and the di�usion coe�cients. If the energy source is on, the code also

calls another routine SORS. SORS can turn o� the source when the energy

production rate from chemistry has reached a predetermined level. This

allows one to apply a source only as long as the chemistry is not producing

signi�cant energy.

Next, the physical variables are extrapolated from the cycle start time

to the cycle end time using Eq. (4.14). This provides the initial guess for

the �nal values of the physical variables.
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We are now ready to evaluate the terms in Eq. (4.8). If the matrix Tm is

not to be updated for this iteration, subroutine DIFFUN is called. DIFFUN

only evaluates ~F n. If the matrix T n is also to be calculated, DIFPED is

called. This routine evaluates the terms in both T n and ~F n. For ease

of coding, DIFFUN and DIFPED are divided into sections in which only

one aspect of the physics is updated at a time. Thus the equations with

no interation terms are evaluated �rst. Next the hydro terms are added,

followed by the thermal-conduction terms. The species-di�usion terms are

added next and then �nally the chemistry terms. Separating the coding for

each type of physics makes it relatively easy to add new physics to the code,

or to debug the coding associated with any physical process.

If a new T n has been calculated, DECBTL is �rst called to do the LU

decomposition given by Eq. (4.7). In either case, SOLBTL is then called to

solve Eq. (4.8).

After the linearized equations have been solved, CKCNVG is called to

see if the system has converged to the solution of the nonlinear equations.

The system has converged if Eqs. (4.9) and (4.10) are satis�ed. CKCNVG

also decides whether a new evaluation of Tm is needed for the next iteration.

If an edit of the results of the iteration is desired, the iteration edit

routine is called. If the iteration has not converged and the number of

iterations has not exceeded a preset maximum, a new iteration is tried. If

the preset maximum number of iterations has been reached, the timestep

is cut in half and the whole cycle started over again, beginning with a new

extrapolation of the physical variables to the new end time. This cutting

of the timestep and retrying the cycle is allowed only a (second) preset

maximum number of times. If the iterations have not converged after this

number of successively smaller timesteps, the problem is terminated. If

the iterations have converged, we now have the physical variables of the

Lagrange calculation at the cycle end time.

If the problem is Eulerian, the rezoning routine is called to determine

the new grid. For both Eulerian and Lagrangian calculations the Newton

polynomials containing the past history of the physical variables are then

updated.

Next, a new timestep �t is calculated for the next cycle. Our criterion

for a timestep is that the maximum relative change during the Lagrange
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calculation of the physical variables be limited to a �xed number, typically

0.05 or 0.1. Species concentrations below a cuto� value are allowed a larger

relative change, since it is believed that they do not need to be accurately

determined to give an accurate solution to the important variables. The

criterion for them is to keep them small enough so that the expansion to

�rst order in small quantities is still accurate enough for the system to

converge.

After the zone mass and zone energy are updated, the code calls the

Lagrange edit routines if the appropriate edit ags have been set. If the

calculation is Eulerian the remap routine is called next. Then, if appropri-

ate, the dump routine is called. All the physical variables have now been

advanced from time t to time t + �t, and the code is ready for the next

calculational cycle.



11

Some Programming Details

The following section is intended for those who might be looking at the

actual coding of HCT. We try to give an idea of the thinking behind the

organization of the coding itself, rather than the mathematics involved in

solving the physical problem.

To allow one to calculate arbitrarily sized problems, the coding for HCT

is set up with a modi�ed form of dynamic dimensioning. Arrays are dimen-

sioned at compile time to be large enough to contain the largest problem

one reasonably expects to run. Any smaller problem then uses only a frac-

tion of the total space reserved. To do this e�ciently, all logically two-

and three-dimensional arrays in these dimensions are laid out in memory as

one-dimensional arrays.

The two-dimensional arrays are stored one column after another contin-

uously in memory, with the declared dimension of the array limiting only the

total length of the associated data. To do the bookkeeping for a particular

calculation, the code determines from the input deck the following integers

associated with a given problem:

KMX is the total number of reactions in a problem, including both those

calculated using Eq. (7.1) and Eq. (7.9). The number of special reactions us-

ing Eq. (7.9) is KMXS. These are assigned indices K less than those assigned

to the standard reactions using Eq. (7.1). Thus a loop over all reactions is

written in two parts. The �rst part calculates reactions with the form of

Eq. (7.9), the second part calculates reactions with the form of Eq. (7.1).

JMX is the number of zones in the problem, including the dummy bound-

ary zones. Then JMXM2 = JMX - 2 is the number of real zones.

IMX is the number of species in the problem.

IT = IMX + 1 is the index of the zone temperature. The zone variables

are arranged as in ~xj (see discussion of the matrix formulation of the solution

procedure). The temperature follows the species in memory.

IR = IMX + 2 is the index of the zone width.

50
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IU = IMX + 3 is the index of the velocity of the lower boundary of the

zone. Since this is the last zonal variable, IU is also the number of variables

associated with a zone.

The code is dimensioned for a maximum MXJMX zones and MXIU zone

variables. A problem with less is allowed since JMX and IU are calculated

for each problem. The two-dimensional arrays such as the vector ~X are

dimensioned MXIUJMX. This limits the maximum number of species times

zones. Any problem for which the product of IU and JMX is less than

MXIUJMX can be run without recompiling the code.

For example, the vector ~X , which can be thought of as a two-dimensional

array C(I,J) (including Tj , �rj and vj� 1
2
as generalized ci;j), is stored as a

one-dimensional array C(N). To pick out the ith species in zone j, HCT has

coding explicitly written to fetch C(N), with

N = I + (J � 1) � IU (11.1)

The arrays Aj , Bj and Cj in the matrix T of Eq. (4.5) are IU by IU.

Elements like (Aj)q;r of Aj involve terms like @(~fj)q=@(~xj)r. The location,

or o�set, within the space allocated for Aj is given by

N = q + (IU � 1) � r (11.2)

The Aj 's are then stored one after another by zone.

One notes that if r = IT, IR or IU we can save a multiply at fetch time

by calculating

IIT = (IU � 1) � IT

IIR = (IU � 1) � IR (11.3)

IIU = (IU � 1) � IU

at problem generation time. We also precalculate the o�sets for (q; r) pairs

that have both q and r either IT, IR or IU:
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IT IT = IT + IIT

IRIT = IR+ IIT

IUIT = IU + IIT

ITIR = IT + IIR

IRIR = IR+ IIR (11.4)

IUIR = IU + IIR

ITIU = IT + IIU

IRIU = IR+ IIU

IUIU = IU + IIU

HCT is currently implemented on the CDC 7600's at Lawrence Liver-

more Laboratory. At LLNL the 7600 has a two-level memory|a 50,000+

word fast access small-core memory (SCM), and a 400,000+ slower access

large-core memory (LCM). A typical large problem that we have run has

IU around 20, with about 25 zones. Thus the matrices Aj , Bj and Cj that

make up the matrix T are on the order of 400 words each. The memory

necessary to save the whole matrix T is on the order of 30,000 words. This

is too large to �t in SCM and still allow room for the rest of the code, so

it is stored in LCM. The IU-by-IU arrays Aj , Bj and Cj are block copied

in and out of SCM so that the calculations can be done when the data are

available in the faster access memory.

This means that one has access to only one zone at a time when the

matrix T is being calculated. Thus the calculations have been organized

on a zone-by-zone basis. A double loop running over a variable with both

species components and zone components will start by calculating all the

species components for the �rst zone, and then increment the zone counter.

We generally adhere to this convention even if all the data are available in

SCM at a given time.

Another important point about the programming is that we have been

able to use highly optimized assembly language routines in the matrix ma-

nipulation parts of the code. These routines take advantage of the \pipeline

architecture" of the 7600 in a way that FORTRAN coded routines cannot.

As pointed out before, the number of operations associated with doing

the LU decomposition of our matrices increases roughly as the cube of the
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number of species. At somewhere around 15 to 20 species, even using these

optimized routines, the time spent doing the matrix inversions becomes

comparable to the time spent in the rest of the code. Clearly, if one expects

to do relatively large calculations, the time spent optimizing these routines

is time well spent.

These matrix-manipulation routines include DEC, which does the LU de-

composition of a general matrix, and SOL, which does the back-substitution

solution of a system of linear equations once the LU decomposition has been

done. In carrying out the matrix operations in Eqs. (4.7), we use MMM,

which multiplies two matrices together and adds the product to a third, and

QVCOMP, which changes the sign of every element in a matrix. The back-

substitution algorithm also uses MMV, which multiples a vector by a matrix

and adds that to a third vector. These routines are in the STACKLIBE[8]

library, available at Lawrence Livermore Laboratroy. Other installations

may wish to obtain these routines, or write their own equivalent routines.

The rest of the code is written in LRLTRAN,[9] an extended FORTRAN.

This allows the code to be easily changed, as well as more easily understood.

As the above discussion indicates, assembly language coding of the physics

would not have a large payo� in terms of e�ciency in large calculations,

since so much of the calculational time is spent in the matrix algebra. A

complete listing of the FORTRAN coding is given in Appendix B.

The graphics output is done with a postprocessor. The postprocessor

reads dumps made by HCT when the problem was run. It uses the Lawrence

Livermore Laboratory DISPLAY[10] package to produce hardcopy. DIS-

PLAY is capable of producing hardcopy graphs and 16-mm movies in either

color or black and white. Having the graphics produced by a postprocessor

rather than inline allows one to change the form of the graphics without

rerunning the original problem.

Since DISPLAY uses hardware and software that may be unique to

Lawrence Livermore Laboratory, users at other installations will probably

have to modify the graphics routines.
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Examples

In this section we consider several sample problems that illustrate ca-

pabilities of HCT. These sample problems are not to be thought of as \op-

timized" descriptions of physical problems. No attempt has been made to

verify the correctness of the physical parameters used. The parameters are

chosen to be correct to roughly an order of magnitude. The purpose of these

examples is to indicate the nature of the calculations the code can handle,

and the kind of information the edits are designed to provide. We also dis-

cuss the numerical characteristics of the code as implemented on the CDC

7600 computers at Lawrence Livermore National Laboratory.

The �rst problem we consider involves only hydrodynamics and thermal

conduction. It is designed to illustrate the behavior of implicit hydrodynam-

ics when quantities are changing slowly compared to sound transit times.

Figure A.0 shows the problem after one cycle. It consists of 1.0 cm of ni-

trogen at one atmosphere (taken as 1:0 � 106dynes=cm2). The left 0.4 cm

is at 2400 K, the right 0.6 cm at 300 K. The discontinuity has the form of

Eq. (9.3), with �x equal to 0.01 cm. The thermal conduction coe�cient is

given by

�T =
�
4:58 � 10�7

� T 1
2

ctot
(12.1)

The problem has 25 spatial zones, with N�, the number of zones reserved

to de�ne the temperature gradient, equal to 5. This results in a minimum

zone size of 0:0081 cm and a maximum of 0:098 cm. The code was allowed

a 0.1 relative change in the physical variables each cycle.

Since there is only one species in the problem, the mole fraction plot is

of no interest. Since the �gure was made after one cycle, the velocities have

changed from their initial zero value.

Figure A.1 shows the state of the problem at 1:16msec. Heat has di�used

from the warmer region, lowering its temperature and raising its density as

the cooler material moves to the left. Note that the timestep is 1� 10�4sec,

with the smallest zone 2:6 � 10�2cm wide. The sound speed at 1400K

is about 7:5 � 104cm=sec, giving a sound transit time across the smallest
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zone of 3:5 � 10�7sec. If this were an explicit calculation, we would need a

timestep of this order. However, since the hydro calculation is implicit, we

are using timesteps several orders of magnitude greater than the Courant

limit. As discussed before, the hydrodynamics is not describing any sound

waves that might be present. It is only moving material around so that

pressure equilibrium is established.

One notices that the minimum temperature appears to be slightly below

300K at the bottom of the high temperature gradient region. In fact, it is

292K there, with a slight hump as one moves to the right. This indicates that

the continuous rezoning is introducing at least a 3 percent error there. The

total internal energy in the problem was conserved to within seven signi�cant

�gures, indicating that the numerical approximations have slightly distorted

the temperature pro�le while conserving energy.

The problem was rerun to this time with 50 zones and an N� of 10. The

minimum temperature then increased to over 300K, although there was still

a slight hump in the fourth signi�cant �gure. In general one will always have

to trade o� accuracy and cost in such a way as to be con�dent of the results

while still having an a�ordable calculation.

The problem was run to a time of 1.0 second. At that time the tempera-

ture ranged from 503 to 521K. The timestep had climbed to 5�10�2seconds.
During the calculation the factor limiting the timestep was the requirement

that the boundary of a zone not move through more than 0.1 of a zone.

Assuming that each cycle represents a signi�cant change in the physical

variables, questions of computer costs divide naturally into four main parts.

The �rst point of interest is the cost of evaluating the left and right sides

of Eq. (4.5). The second is the cost of solving Eq. (4.8). This depends

on whether the LU decomposition of Tm has already been done or not.

Since the LU decomposition is considerably more expensive than the solution

by back substitution, the third important question is the frequency of LU

decompositions compared to the total number of iterations. And �nally,

since the cost is proportional to the number of iterations, the �nal point of

interest is the average number of iterations per cycle.

Since all computer costs scale by the number of zones and number of sub-

routine calls, we generally quote timing results for calls in terms of their cost

per zone calculation. This form provides conveniently normalized reference
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numbers. Costs for other calculations can then be estimated by knowing

how the individual routines scale. For example, DIFFUN and DIFPED will

usually scale by the number of reactions for problems with large numbers

of reactions. The cost of the hydro is usually small compared to the cost

of evaluating many reactions. However, the cost of the LU decompositions

asymptotically scales by the cube of the number of species and depends not

at all on the number of reactions. Thus if the matrix manipulation routines

are the dominant sink of CPU time, one knows that adding more reactions

will not increase costs much if no additional species are added.

For this problem, the cost of evaluating the left side of Eq. (4.5) averaged

46�sec=zone�call. Calculating both the left and right sides of Eq. (4.5) took
126�sec=zone � call. Each LU decomposition required 219�sec=zone � call,
and solving the system by back substitution required 66�sec=zone � call.
This problem represents the minimum cost for the matrix-manipulation rou-

tines, since it has the minimum 4 variables/zone. Since there is no chemistry,

the costs of evaluating Eq. (4.5) are also minimized.

The code averaged 5 iterations/cycle to converge to 1 part in 106. New

LU decompositions were done 110 times in 175 cycles, averaging 1 call per

8 iterations

The entire calculation averaged about one msec=zone � cycle. Thus to

run the 25-zone problem to the 50 cycles of Fig. 2 took approximately 1.3

seconds of CPU time.

These �gures are given to indicate the cost of the calculations on the

CDC 7600. They are very much a�ected by the relative e�ciency of the

coding. In particular, it is important to recall that the matrix manipulations

are done by calls to assembly-language routines that are probably nearly as

e�cient as possible on this machine.

The next example is a simple ozone ame. Table A.1 gives the constants

associated with the equations of state for O, O2 and O3 used in the calcu-

lation. CPA1, CPA2, etc. are the coe�cients of the speci�c heats expanded

in powers of T=1000, with CPA1 being the coe�cient of (T=1000)0. The

units of Cp are cal=mole. H0 is the enthalpy at 298K, in kcal=mole.

Table A.2 gives the constants associated with the reaction set used. FRC,

FRD and FRX correspond to Ak, bk and Ea
k in Eq. (2.2) for the forward



12. EXAMPLES 57

reactions. RRC, RRP and RRX are the corresponding terms for the reverse

reactions. IRF is the reaction type, according to the six possible types

explained in the kinetics description.

In this problem we mimic Spalding's approach to �nding the ame veloc-

ity. Spalding's approach is to choose an initial con�guration and evolve the

time-dependent equations of motion until steady state is achieved.[11] Our

procedure di�ers slightly in that we solve the full hydrodynamic equations

rather than assume pressure equilibrium. To force our equations to give

pressure equilibrium and hasten the approach to steady state, we reduce

the acceleration term Dv=Dt in Eq. (3.8) by a factor of 103 This reduces

the inertial resistance to the establishment of pressure equilibrium.

The initial condition is shown in Fig. A.2. The mesh is 0.3 cm long. The

left 0.02 cm is at 1250K and the right 0.28 cm at 300K. The unburned

mixture consists of a 1:3 mole fraction mixture of O3 : O2, with the O

mole fraction at 10�6. The burned gases were given initial mole fractions of

0.01, 0.99 and 2 � 10�5 for O, O2 and O3, respectively. The burned-gases

temperature of 1250K is approximately the adiabatic ame temperature of

the mixture. The discontinuity between the left side and the right side was

again chosen to have the form of Eq. (9.3), with �x = 0:001cm. As in the

�rst example, there are 25 zones in the problem, with 5 zones reserved to

describe the temperature gradient. The system is at one atmosphere, with

the left boundary closed and the right boundary open.

The thermal conduction coe�cient is given by Eq. (12.1). The species

di�usion coe�cient by

Di = (4:16 � 10�7)
T

1
2

ctot
(12.2)

the same for each species.

The problem was started with an initial timestep of 10�9sec to allow the

fast kinetic rates to come into equilibrium. Figure A.3 shows the problem

after 15:7�sec at cycle 100. The problem has not yet settled into a steady

state, since the velocity is negative behind the ame front. This indicates

that the whole system is being pushed to the left. The step in temperature

has rounded somewhat.

Figure A.4 shows the ame when it has propagated most of the way

across the grid at 389�sec and cycle 1000. The ame now is nearly at a
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steady state, but there are still e�ects present due to the �xed left boundary.

From the mole-fraction plot, one notes that the O3 concentration is still

decreasing as one approaches the left boundary. Later we will show that

heat is being produced behind the ame. This results in heat owing to the

right. Since there is no heat ow through the left boundary, the boundary

is unlike the corresponding point in the in�nite-medium case. As the ame

gets farther from the left boundary, the characteristics of the ame approach

those of the in�nite-medium case.

Table A.3 shows an edit of the problem at 3:89�sec. The left column

labelled JD gives the zone number. The column labelled R gives the location

of the left boundary of the zone relative to the left boundary of the problem.

DR is the zone width, CTOT the total molar species concentration, RHO

the density, T the temperature and U the velocity of the left zone boundary.

PRESS is the pressure in CGS units.

EDOTR is the energy produced through chemical reactions in the zone.

EDOTC is the energy deposited by conduction, EDOTD that deposited by

the species di�usion. P �DV=DX is the work produced by hydrodynamics.

Each of these terms corresponds to a term in Eq. (3.16). EDOTC is the

term proportional to �T , EDOTD the term proportional to the Di.

VSOUND is the velocity of sound in the zone. From VSOUND and the

fact that the timestep is around 4 � 10�7sec, we note that the problem is

running more than an order of magnitude above the Courant condition.

The other parameters shown at the top of the edit relate to the way the

problem is running. AVGITER is the average number of iterations/cycle.

NJCBTOT is the number of times the full LU decomposition of the equa-

tions was done. IRCYTOT is the total number of times the iteration scheme

failed to converge. IRZFTOT is the number of times the rezoning routine

tried to move the grid more than allowed. The code has a parameter that

sets the maximum distance the rezoning routine can move a zone boundary.

That parameter for this problem is 0.1 times the width of the zone in the

direction of the move. If the desired distance is greater than allowed, the

rezoner moves the boundary as far as allowed, adds one to IRZFTOT, and

the calculation proceeds. If the rezoner continually tries to move bound-

aries farther than allowed, one may want to run the problem over with the

timestep reduced.
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At the bottom of the edit is information about how much computer time

has been used so far. A line giving the total CPU time, I-O time and system-

call time is followed by a table giving the time in microseconds for various

subroutines. If the values in the second column are divided by the values in

the �rst, we get the number of calls to the subroutines each cycle. SOL and

DEC terms are for the full block-tridiagonal-matrix routines.

From EDOTR in Table A.3 one sees that zone 12 is the zone with the

largest heat release due to kinetics. Table A.4 is an edit of the rates of

change of the species in this zone.

The �rst two rows identify the physical variables and give their values.

The next two rows give the total and net rates of change of the variables in

moles=cm3 �sec (except for temperature, which is given inK=sec). The total
rate is the sum of the absolute value of the rates of change due to conduction,

di�usion, hydrodynamics, and each forward and reverse chemical rate. Thus

it is a measure of the shortest characteristic timescale, or sti�ness, of that

component of the system. The net rate is just the sum of the rates, and thus

the rate at which the variable is changing. By looking at these two numbers

one can tell if the variable is sti� or not, as discussed in connection with the

characteristics of chemical systems.

The numbers under each physical variable following the total and net

rates are expressed as fractions of the total rate. Thus one can see at a

glance which rates are controlling a given variable. The actual value of the

rate of relative hydrodynamic change and the actual rates of the chemical

reactions are given under the RATE column.

The hydrodynamic rate of change of a species concentration ci is just ci �
(�dv=dx), where v is the velocity. It is due to the expansion or contraction

of the zone. The relative rate is �dv=dx. This is a Lagrange edit, taken

after the Lagrange part of the cycle, so the advection implied by the remap

is not taken into account.

One notes that there are only two reactions printed. The code does not

print out rates that are smaller than a given fraction of the total rate for each

species involved. This cuts down the size of the edit when many reactions are

being calculated but few are important. In this edit that fraction is 0.01.

Thus the remaining rates in Table A.4 give rise to contributions smaller

than 1 percent of any species' total rate. There is also an option to set this

fraction to zero, and thus print out all the rates.
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Examination of Table A.4 shows that the chemistry is proceeding via

O3 ! O +O2

O +O3 ! O2 +O2

These rates are not quite equal because of the net di�usion of O into the

zone. The O itself is in a quasi-steady state, since the net rate is very much

smaller than the total rate. One notes a signi�cant amount of di�usion of

O3 into the zone and a signi�cant di�usion of O2 out of the zone.

Now let us look at the region behind the ame, where slow burning is

causing the boundary e�ect to be large. We look at zone 4, which is more

than half way back to the left boundary. Table A.5 shows that the important

chemistry is

O +O2 ! O3

O +O3 ! O2 +O2

O +O ! O2

A negative reaction number in the table indicates a reverse reaction. The

�rst two reactions are nearly balanced, and the net e�ect is the same as the

third reaction. The third reaction rate is comparable to the net rate of the

�rst two, and all the reactions are exothermic. Thus at this point we are

converting excess O into O2 with a release of heat. Note that here the O3

is the sti� component.

Next let us investigate how quickly the problem is approaching the

steady-state in�nite-medium conditions we expect as the ame front gets

farther and farther from the left boundary. A measure of approach to steady

state is the rate of change of the ame velocity.

We use the de�nition that the ame speed is the speed of the ame

front relative to the unburned gas. We de�ne the ame front to be the

point at which the temperature is a predetermined value Tf . It is usually

advantageous to pick a Tf that is characteristic of the steepest portion of

the temperature curve, since the automatic rezoner gives the best resolution

there. Even so, since the problem is divided into discrete zones, the temper-

ature variation is not known explicitly across any one zone. The best that

can be done is to assume an interpolation based on the average value of the

temperature in the zone.
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The prescription we use is to assume that Tj represents the temperature

at the center of the zone. We linearly interpolate from zone centers to

de�ne the temperature T (x) everywhere. The location where T (x) assumes

a particular value can then be found.

We can be most con�dent that we accurately know when a ame has

moved a distance �x in time �t if, during that time, the ame has moved

from a location that is a fraction � across one zone to a location that is

the same fraction � in another zone. Then the inaccuracies inherent in the

interpolation are minimized.

One might think that the distance �x characteristic of the distance the

ame front moves when it moves through a single calculational zone would

be �rmin, the size of the smallest zone. When using the dynamic rezoning

option, however, this is not true, since the grid tends to move with the ame

front. In fact, �x turns out to be more like �rmax, the size of the largest

zone.

One can understand this result by picturing a steady state ame in the

middle of the grid. The size of a zone in the ame front is determined by

the requirement that it represent no more than a speci�ed fraction of the

temperature change across the grid. The zones become larger as one moves

away from the ame front so that the entire grid is described. Now imagine

the ame has moved the distance of one of the larger zones. The number

of zones needed to describe the front is the same, but now we need one

less zone ahead of the front and one more behind it to describe the whole

problem. Thus the ame must have burned through one calculational zone.

The e�ect of this change is the same as if one of the larger zones had

been moved from ahead of the ame to behind it. The actual size of the zone

moved will vary as the ame moves across the grid because the algorithm

determining the grid is nonlinear. One can see this in Figs. A.2, A.3, and

A.4.

We measure the velocity by measuring the movement of the front be-

tween problem dumps. For each dump n we determine the location of the

ame front within the zone containing Tf . Then we locate the next dump

m with Tf nearest the corresponding location in the next zone. Thus

vn(�x) =
xm � xn
tm � tn

(12.3)
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We write vn(�x) to emphasize that the velocity is measured over a �nite

distance. As discussed above, that distance may not be the same at di�erent

times in the same problem even if the problem is in a steady state. The time

to propagate through a zone depends on the location of the ame, since

�rmax varies as the ame moves across the grid.

The time associated with the velocity vn(�x) is given by

tn(�x) =
1

2
(tm + tn) : (12.4)

One may have dumps close enough in time that m > n + 1. In that

case there are several vl(�x) that represent velocity measurements starting

between xn and xn + �x. Since we are already averaging over a distance

�x, we can average over these measurements to improve resolution and still

be sure that we are measuring properties only over a distance characterized

by �x. Thus let

vn(�x) =
1

m� n+ 1

mX
l=n

vl(�x) (12.5)

tn(�x) =
1

m� n+ 1

mX
l=n

tl(�x)

(12.6)

In addition, one can improve resolution by measuring velocities over �x's

that correspond to the ame moving through more than one zone, if desired.

An important question that has yet to be addressed is how quickly the

numerical procedure converges to the solution of the di�erential equations.

We use the calculated ame velocity to measure this.

Figure A.5 shows the velocity calculated using Eqs. (12.5) for the 25 zone

problem. The velocities were averaged over a distance corresponding to the

ame moving through one zone. It appears that the ame is pretty nearly

in steady state at 200�sec. Figure A.6 shows a plot taken at this time. A

comparison with Fig. A.4 supports the view that the later time represents the

translation of the problem to the right about 0:1cm. Incidently, during this

time the problem has burned through two zones, even though the smallest
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zone is less than 1:6 � 10�3cm thick. This shows clearly how the grid is

moving with the ame.

The chemistry calculation has �rst-order accuracy, and therefore we ex-

pect HCT to have approximately �rst-order accuracy as a whole. Thus the

error should scale as (�x)2 or (�t)2. We ran a series of problems in which

�x and �t decrease by a factor of approximately the square root of 2. Thus

starting with 25 zones, we next ran with 35 zones and then 50 zones. Start-

ing with an N� of 5, we increased N� to 7 and then 10 as the total number of

zones increased. We also simultaneously reduced the relative change allowed

each physical variable during a cycle from 0.1 to 0.071 to 0.05.

Figure A.7 shows a comparison of the velocity calculated from the three

problems. If the errors scale as (�x)2 and (�t)2, the di�erence between

curves f1g and f2g should be twice the di�erence between curves f2g and

f3g. This is very nearly true. From this argument it follows that the true

velocity should follow a curve the same distance below curve f3g as curve

f3g is below curve f2g.

Figure A.8 shows the temperature pro�les for all three problems at

400�sec. The left edge of the �gure is the position of the original step

in temperature, so the distance from the left edge is the distance the ame

has travelled. All three pro�les appear essentially the same, despite the fact

that pro�le f3g is described by twice as many zones as pro�le f1g. The

�gure also shows a relative error in distance travelled consistent with the

velocity di�erences of Fig. A.7.

We expect the problem running time to scale by �t times �rmin. The

factor proportional to �t is clear; the factor proportional to �r follows

since �r is proportional to the amount of material in the zone. A small

zone would then have the species changing more rapidly as the ame moved

through.

The 25-zone problem took 38 seconds to run, the 35-zone problem 58

seconds. The 50-zone problem took 112 seconds, so the computer cost rises

slightly more slowly than expected. This is partly because with smaller rela-

tive changes allowed per cycle the code requires fewer iterations to converge.

We also ran two more problems to separate the e�ects of decreasing the

timestep from the e�ect of increasing the number of zones. Figure A.9 shows
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the velocity curves from these additional runs plotted against the previous

25-zone problem (curve f1g) and the previous 35-zone problem (curve f4g).
Run f2g is the same as run f1g except that the maximum relative change

per timestep was decreased from 0.1 to 0.071. Run f3g di�ers from run f2g
in that N� was increased to 7 and the total number of zones increased to

27. Run f4g represents an increase in the total number of zones to 35, with

all else the same as run f3g. It is clear that the greatest improvement in

accuracy results from the increase in N�.

The third example is designed to illustrate the behavior of the code when

calculating a fairly complicated system with many species and reactions

The problem is a low-pressure (about 1/20 atmosphere) 9.5-percent

(mole fraction) methane-oxygen mixture. The system is described by 15

species and 45 reactions on a 10-centimetre grid. There are 25 zones in the

problem, with N� equal to 8. Tables A.6 and A.7 show the species and

reactions involved.

The problem starts with an initially uniform distribution. The left

boundary is �xed, the right boundary open. The volume source of Eq. (9.1)

is used. The parameters of Eq. (9.3) are a Svol0 of 225 cal=cm3 � sec, x0 equal
0 and �x equal 0:04 cm. The source is on until tig equal 0:3milliseconds.

This is a slow enough source that no shocks are generated. Equation (9.7)

implies that a total of 1:87 � 10�3cal=cm2 are put into the problem.

The thermal conduction coe�cient and species di�usion coe�cients are

again given by Eqs. (12.1) and (12.2).

Although the problem is initially uniform, we know that the source will

concentrate the action at the left side of the problem. Furthermore, since

the source is characterized by Eq. (9.1), we want to initialize the zoning

with a grid that is capable of resolving the source as it dumps in energy.

Thus the grid is initialized by the dynamic rezoning algorithm using an f(x)

for Eq. (6.2) in which dT=dx has been replaced by the source distribution

function of Eq. (9.3). This gives the required resolution at the left side of

the problem (see zone size plot of Fig. A.10).

Table A.8 gives the input deck for this problem. With the help of Ap-

pendix A one can see how the variables are speci�ed for this problem.

One notices that some of the variables are set more than once. The

NAMELIST input routines used by the code to read the input �le always
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stores the last value read. If variations are being run o� a basic input deck,

it is convenient to keep the basic deck unchanged and add the variations at

the end. A simple check of the end of the input deck tells what changes have

been made without the necessity of comparing the whole deck.

We point out how the species are speci�ed from the data �le CDAT.

Variable LISTS speci�es the species to be used according to their arrange-

ment in the data �le CDAT. The code then reads the appropriate data from

the �le and assigns a new species number according to the order in which

the species were speci�ed in the input deck. The numbers in LISTS need

not be in any particular order. Thus LISTS speci�es species 1 through 6

and 12 through 20 in CDAT. In the problem these species are renumbered

1 through 15, as can be seen in Table A.6. A similar scheme is used for the

reaction list LISTR. Note that variables FRC, FRX, RRC and RRX reset

some of the reaction constants, overriding the values obtained from CDAT.

The index of the variable to be changed must correspond to the index the

code uses, not the index in CDAT. A check with Table A.7 veri�es that the

correct parameters were used.

Figure A.10 shows the problem after cycle 1. Note that the zoning is

concentrated at the left side of the problem. All species except O2 and CH4

have mole fractions around 10�6.

Figure A.11 shows the left one-tenth of the grid at cycle 140. We show

only the left tenth since very little is happening in the rest of the problem.

At this stage we notice that enough energy has been added to heat the left

boundary to over 2500K. The heat added is pushing gas out the right side

of the problem. It is also increasing the chemical reaction rates, producing

signi�cant concentrations of minor species.

Figure A.12 shows the same portion of the grid as Fig. A.11 just after

the source has been turned o�. From the velocity plot one sees that gas is

being pushed away from the 0:1cm area, suggesting that energy production is

largest there. The mole fraction plot, with its decreasing CH4 concentration

left of 0:1cm, suggests that signi�cant combustion has occured there. These

factors suggest a propagating ame. The temperatures higher than ame

temperature at the left boundary are due to the source.

Figure A.13 shows the problem at nearly 30milliseconds. Unlike Figs. A.11

and A.12, this shows the whole computational grid. The ame has propa-

gated most of the way across and has settled into a nearly steady state.
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Table A.9 give the overall edit of the problem at this time. The expla-

nation of this edit was given for Table A.3. Table A.10 gives a printout of

the species mole fractions at the time. This is a table of the information

presented graphically in the lower right frame of Fig. A.13. Tables A.9 and

A.10 together give a complete listing of the physical variables at this time.

EDOTR in Table A.9 shows that zone 13 is the zone with the largest

rate of chemical heat release. Table A.11 gives an edit of the rates involved

in changing the concentrations in this zone. This edit was explained for

Tables A.4 and A.5, but in this case there is considerably more information

to digest. Note that if every reaction was printed, rather than just the

important ones, 90 reactions would be listed.

Table A.12 gives the relative change for the variables in the Lagrange

part of the calculation. Since the timestep is based on the largest of these

numbers, inspection of this edit gives an idea of whether the code is calcu-

lating e�ciently or not. Table A.9 gives H2O2 in zone 13, with a relative

change per cycle of 0.092, as the variable limiting the timestep. Table A.12

shows that all species except H2O have relative changes of at least 0.01.

Species H, O, OH, HCO, CH3, CH4, HO2, CH2O, and CH3O have rel-

ative changes of at least 0.05. This indicates that a calculational cycle

represents a signi�cant evolution of the physical state of the problem.

Table A.13 gives the relative change due to the remap. It allows an

estimate of the contribution to change due to advection, although one must

keep in mind that this is advection through a moving grid. In order to

examine the advection through �xed points in the grid, we ran one more

Eulerian cycle with the dynamic rezoner turned o�. This causes the variables

to be mapped back onto the original gird. Table A.14 shows the relative

changes caused by advection alone for this additional cycle.

The numbers are not strictly comparable with data in Table A.13, since

they refer to a di�erent cycle. In addition, the change is calculated relative

to the value of the variables at the end of the cycle. However, it is not

necessary to correct for these e�ects to see a signi�cant di�erence between

the two tables.

If one looks at the zone with the largest Lagrange relative change for

each species separately, one notes that the changes in Tables A.13 and A.14

are generally in the opposite direction. This is true for all species but H2O,

whose relative change is the smallest of all.
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The dynamic rezoner is choosing a grid that tends to cancel the change

produced by the Lagrange calculation. This is consistent with a picture

of the grid moving with the ame front, so that the values of the physical

variables in any zone are unchanged after each cycle.

In contrast, where the Lagrange change is largest for a species, the remap

change shown in Table A.14 is in the same direction. The change due to

advection adds in the same sense as the change produced by the Lagrange

calculation.

In both cases, the changes produced by the remap are comparable to the

changes due to the Lagrange calculation.

The fact that the changes in Tables A.12 and A.13 tend to cancel suggest

an interesting mathematical question: Might it have been useful to include

advection in the fundamental Eqs. (2.1), (2.9), (2.13) and (2.22), thus negat-

ing the necessity for a separate remap? This should allow a larger timestep,

since the timestep is chosen to limit the total relative change in the species

concentrations during the Lagrange calculation.

This was not done primarily for reasons of simplicity. The Lagrange

equations are much simpler than the Eulerian equations with the several

di�erent types of remaps that we currently allow. To have a purely implicit

Eulerian code with all remap possibilities, we would have to add coding to

calculate the boundary terms given by Eqs. (5.3), (5.5), (5.9), (5.10), (5.11),

(5.15), and (5.17), (as well as the auxilliary terms appearing in them) at the

cycle end time in terms of the last value of the variables and the corrections

to them.

In addition, one would have to make some guess as to the distance the

grid should be moved if the dynamic rezoner was used. This may not prove

di�cult, however, as one could probably just move the grid to the con�gu-

ration needed to describe the problem at the end of the previous cycle.

There is also the nontrivial question of stability of the proposed Eulerian

set of fundamental equations. The Eulerian equations would not give the

same change per timestep as is currently obtained by �rst doing the Lagrange

cycle and then remapping, since the advection terms would be calculated

using the same variables as the hydrodynamics, chemistry, and transport.

The current coding uses an intermediate set of variables that are not equal
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to those at the beginning of the cycle or those at the end of the cycle.

They are those that exist after the Lagrange cycle, but before the remap.

Conservation laws using these intermediate variables determine the remap.

Since the Lagrange equations separately are stable and the remap by itself is

stable, the combination is stable. The combined operations may introduce

instabilities that are damped by the current intermediate step. This question

needs to be investigated.

If the remap was done implicitly, the timestep limitation would probably

become the requirement that the boundary of a zone not move through

more than a given fraction of its neighboring zone in one cycle. This is

a limitation we should expect since the di�erence scheme only connects

nearest neighbors. For this example, we estimate the velocity of a zone

boundary in the ame front to be approximately the ame velocity. This

follows since the grid is tracking the ame. From Table A.9, this is at least

200 cm=sec in the problem frame of reference, since this is the velocity of

the unburned gas. The ame is moving into the unburned gas, and thus

must have a higher velocity than the unburned gas. That velocity would

move the boundary between zones 13 and 14 through zone 14 in about

3:7� 10�4seconds. If we allow a 10 percent transit in one cycle, this would

give a timestep of 3:7 � 10�5seconds. This is nearly the current timestep.

Thus the relative advantage of a pure Eulerian calculation is probably fairly

problem dependent.

These are very interesting questions that we have not yet had the time

to investigate. We leave them as questions to be answered in the future.

Dividing the timing information at the bottom of Table A.9 by the num-

ber of zones shows that an LU decomposition takes 4000�sec=zone � call.
An LU decomposition was called for on the average of twice every three cy-

cles. The calls to SOL averaged 300�sec=zone � call. Looking at Table A.3,
this compares with 360�sec=zone � call and 80�sec=zone � call respectively
for the ozone ame. The ozone ame with only 3 species has M = 6 zone

variables, while the methane has M = 18. The increase by a factor of 11

in the cost of DEC is less than the factor of 27 one would expect if the LU

decomposition scaled as M3, but is more than a factor of M2. Apparently

one has not reached the asymptotic limit. The SOL calls scale by a factor

of 3.8, compared to the factor of 9 expected if they scaled by M2.

One notes that calls to DIFPED are about an order of magnitude more

expensive in the methane ame than in the ozone ame. Since the number of
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reactions involved increased from 3 to 45, this is consistent with regarding

DIFPED as scaling linearly with the number of reactions. Thus while in

the smaller problem the LU decompositions are less expensive than the

calculation of the equations, in the methane ame the matrix routines are

more expensive. It is clear that as one calculates problems with greater

numbers of species, the matrix routines will consume a larger fraction of the

total computer time.

We also note that DIFPED is 4 times as expensive as DIFFUN, i.e., the

left side of Eq. (4.5) costs 4 times as much to evaluate as the right side.

In addition, the LU decomposition is over 13 times as expensive as a call

to SOL to solve the equations by back substitution once DEC has been

called. In the actual running of the problem, the time spent in DIFPED

plus DEC and SOL is roughly comparable to the time spent in DIFFUN

plus SOL. Thus the use of Eq. (4.8) when possible has considerably reduced

the running time of the problem. This is not completely clear from this

argument alone, since evaluation of a new matrix T n each iteration gives

faster convergence, but an independent check indicates the current method

of using Eq. (4.8) when possible is probably saving at least a factor of two

in running time. There may be additional ways to minimize running time

that we have not explored. For example, one might want to try di�erent

convergence criteria, or di�erent ways of determining when a new matrix

T n should be calculated.

From the total CPU time spent we see that the problem took almost eight

minutes to run to the con�guration of Fig. A.13. This is a cost of about

12:5milliseconds=zone �cycle. The corresponding �gure for the ozone ame
is 1:5milliseconds=zone � cycle.

This problem was actually run in such a way as to illustrate two dis-

tinct problems|ignition and steady state propagation. If one is interested

mainly in ignition, the calculation can be terminated at cycle 300, as seen

in Fig. A.12. The calculation of the �rst 300 cycles costs about 1.8 minutes.

If one is interested in seeing the e�ects of various changes in physical

parameters on steady state calculations, one could run the �rst calculation

as a baseline problem. Other runs could start from the dump of this problem

at cycle 1500, modify the parameters, and run a few hundred cycles until the

transients settle out. This would be a considerably less expensive procedure

than running the whole problem over each time from ignition. The whole

HCT code system is built to work easily in this mode.



13

Relation To Other Methods

There exists a literature on computer methods to solve the time-dependent

hydrodynamics, kinetics, and transport equations (in one dimension) that

are described in this report. In this section we discuss the relation between

HCT and some of these methods.

Spalding �rst proposed using the time-dependent equations solved here

to predict ame speeds.[11] Aside from assuming pressure equilibrium, the

basic equations are similar. We just point out that including pressure vari-

ations allows one to solve a wider class of problems. As shown earlier, we

have written our di�erence equations in such a way that uniform pressure

problems are also calculated correctly.

Spalding proposed to calculate the ame speed by letting an initial con-

�guration settle to a steady state by solving the time-dependent equation.

We illustrated this method in calculating the ame speed for our ozone ame.

Several workers have used this basic idea in several investigations.[12],[13],[14]

However, the methods used for di�erencing the equations vary, as well as

the method of solution of the resulting di�erence equations.

Our hydro equations are based on the scheme used in KRAKEN.[15]

The most distinctive feature we have borrowed is the consideration of an

Eulerian calculation as a two-step process|a Lagrange calculation followed

by a remap of the physical variables. This method makes dynamic rezoning

particularly simple. Our use of a Newton's iteration method to solve im-

plicitly di�erenced hydrodynamics equation is similar to a method used by

Lindemuth.[16]

The general hydrodynamic and transport equations are written in an

explicitly conservative form. Thus the species concentrations are automat-

ically conserved, the hydrodynamic work done on the uid goes into the

internal energy of the species, and momentum is conserved in the interior

of the mesh. Thus even if the mesh has varying degrees of resolution in dif-

ferent parts of the problem, these important characteristics of the problem

will be preserved.

70
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We note that species are conserved to the order of machine roundo� by

the Newton's iteration scheme we use. This is true even if one is iterating

using the old matrix Tm, as in Eq. (4.8), rather than evaluating a new T n,

as in Eq. (4.5). This follows from the fact that the linearized equations

we solve to machine roundo� conserve concentrations. Using Eq. (4.8) is

equivalent to using Eq. (4.5) with incorrect derivatives in the expansion of

the implicit terms about the latest variable values. This expansion still has

the property of conserving species. This may not be true in other iteration

schemes.

Our equations are di�erenced directly on the space coordinate, even

though the equations are written in the Lagrange reference frame. Bledjian[12]

worked explicitly in the Lagrange coordinate; Spalding, Stephenson and

Taylor[13] and Smoot, Hecker and Williams[14] make an additional variable

transformation to handle boundaries at in�nity.

Our equations are all di�erenced implicitly in terms of the values at the

end of the calculational cycle. It is well understood that this is necessary for

an e�cient computer algorithm if the di�erence equations are su�ciently

sti�. The usual reason for reluctance in using such equations is that solving

the resulting implicit relationships can be very expensive, since they involve

inverting large matrices. We have shown that this expense is a�ordable

for the problems considered. The fact that the time spent calculating the

physics in DIFFUN is comparable to the time spent in the matrix inversion

routines illustrates this. This will not be true for su�ciently large problems,

of course. They may have to await even faster computers than the CDC

7600 to be practical.

There are ways to have the advantages of implicitly di�erenced equations

without having a system of equations such as those in HCT. The simplest

is operator-splitting, where the individual operators are implicit but are ex-

plicitly coupled.[17] In one such scheme, the hydro and transport equations

are di�erenced implicitly but without the chemistry terms.[18] The implicit

hydro equations are solved and a separate subroutine called to update the

chemistry. The hydro scheme uses a generalized ICE method,[19] the chem-

istry uses a one-step backward Euler scheme.[20] Thus symbolically, we have

d ~X(t)

dt
= Ahydro( ~X(t)) +Bchem( ~X(t)) (13.1)
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In an operator-split algorithm, this equation is solved in two steps, each of

which is implicit:

~Xn+ 1
2 � ~Xn = �tAhydro

�
~Xn+ 1

2

�
(13.2)

is followed by
~Xn+1 � ~Xn+ 1

2 = �tBchem( ~X
n+1): (13.3)

Adding these two equations gives

~Xn+1 � ~Xn = �t
h
Ahydro

�
~Xn+ 1

2 ) +Bchem( ~X
n+1

�i
: (13.4)

It is clear that each individual equation is implicit, and thus the sti�ness

of each separate operator is taken into account. If ~Xn+1=2 is intermediate

between ~Xn and ~Xn+1, the method may be as accurate as a fully implicit

scheme that solves

~Xn+1 � ~Xn = �t
h
Ahydro

�
~Xn+1

�
+Bchem

�
~Xn+1

�i
(13.5)

in one step. Furthermore, it is clear what one must do to be sure that

the two-step procedure of Eqs. (13.2) and (13.3) be as accurate as solving

Eq. (13.5). We just have to make sure that the changes in going from ~Xn

to ~Xn+1=2 and from ~Xn+1=2 to ~Xn+1 are comparable to the changes allowed

in going directly from ~Xn to ~Xn+1.

The choice of the operators to be split is usually made on the basis

of which combinations of operators are easiest to solve. The most serious

problems arise if the mathematics dictates a natural choice of A and B,

but this choice gives large changes that tend to cancel. In this case the

coupling between the two operators is sti�. The timestep must be limited

to give a small change in either of the operators, rather than the sum. If

one is trying to calculate a quantity such as ame velocity that depends on

accurately calculating the interplay between the two operators, one can get

into timestep troubles.

Even with these restrictions, operator-split codes have been used to cal-

culate solutions to a variety of combustion problems. We have chosen to

solve the fully implicit system for the added generality of being able to

e�ciently solve problems where operator splitting is known to have di�-

culty. This is in keeping with our general philosophy of using as \robust"

an integrator as possible. Tables A.4, A.5, and A.11, show examples where
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the chemistry and hydrodynamics are closely coupled. For the examples we

have tested, our choice has not resulted in signi�cantly larger computational

costs.

Another approach is to solve the implicitly di�erenced Eq. (13.5) with

an iterative matrix inverter. This gives the advantage of the fully implicit

di�erence equations. An iterative algorithm may have advantages in com-

puter storage requirements or computer costs considerations. In the case of

two-dimensional problems,[21] one seems forced to such a method since the

LU decompositon of the matrix analogous to T n in Eq. (4.5) requires consid-

erably more storage than the original matrix. It also requires proportionally

more calculations. We merely point out that there is a noniterative method

for the one-dimensional equations. Our examples show it to be practical for

our applications. We know of no iterative method that shows promise in

this situation.

A more general approach to solving Eqs. (3.3), (3.8) and (3.16) is the

method of lines.[22] Included in this general idea is the idea of reducing

the partial di�erential equations to a set of ordinary di�erential equations

(ODE's) by a particular discretization, and then solving the resulting set of

ODE's using a standard ODE solver such as GEAR.[23]

One of the important phases of this process is the reduction to a set of

ODE's. Conceptually, this is the reverse of the way we derive our equations,

i.e., we �rst wrote our description of the system in �nite form and then

showed that it reduces to the appropriate partial di�erential equations.

It is apparent that one introduces errors in the process of spatial dis-

cretization. In general, the errors introduced here will set an upper limit

on the accuracy of the result. This would suggest that there is little to be

gained in integrating the resulting ODE's to an accuracy greater than that

inherent in the discretization.

It has been proposed that one can �t the variables to a well-de�ned

spatial order of accuracy by �nite element methods. Margolis has used

B-spline �ts giving fourth-order accuracy in distance, combined with the

ODE-solver package GEAR to calculate a propagating ozone ame.[24] The

whole procedure is done using the software package PDECOL of Madsen

and Sinovec.[25]
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This procedure does not ensure that the conservation laws are satis�ed

exactly, as the �nite di�erence equations used in HCT do. However, fourth-

order accuracy in �x should be su�ciently accurate if the grid is �ne enough

to follow the variations of all the species.

A higher order description will in general require more grid points than

a lower order description to insure a well-behaved solution. For example, a

�rst-order �t between two grid points of a function that is really a decreasing

exponential will at least be positive de�nite. A higher order polynomial �t

through several points may not. HCT uses lower order approximations in

order to give well-behaved solutions with as few grid points as possible. If the

number of grid points required is signi�cantly less than the number required

for the higher order schemes, the calculations will be correspondingly less

expensive. The key question is whether the lower order equations converge

rapidly enough to the true solution to be useful.

Table A.10 for the methane ame shows several concentrations that vary

almost an order of magnitude from zone to zone. Note, for example, how

quickly the CH3 and CH4 concentrations fall o� behind the ame front.

Such variations can not be �t well with so few grid points by any interpo-

lation higher than �rst order, and yet useful answers can be obtained from

such calculations. This can be seen from the ozone ame calculation, where

the 25-zone problem gave a ame velocity to within about 10 percent, even

with such a crude representation of the species concentrations.

A higher order interpolation also has the disadvantage of connecting

more than 3 grid points in the di�erence equations. Such a circumstance

results in a matrix equation analogous to Eq. (4.5) that is larger than block

tridiagonal, considerably increasing both storage requirements and the cost

of solving the equations. We prefer a system of relatively low formal accu-

racy where one increases the number of zones and reduces the timestep for

increased accuracy. One then experiments with these parameters until the

desired accuracy is obtained.

HCT has another feature that makes the method of lines more di�cult to

apply in this case. This feature is the variable grid algorithm that chooses

the grid on the bases of the temperature distribution. It is undoubtedly

possible to use the method of lines with a variable grid, but we have not

had time to investigate the properties of such a system.
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HCT might bene�t from the more sophisticated error-control procedures

of general software packages such as GEAR. This may allow larger timesteps

than our method uses. It may also need fewer iterations to converge to the

solution of the implicitly di�erenced equations.

One might think that since we also calculate the Jacobian of the equa-

tions of motion, one could use HCT's routines in the GEAR package, using

the simpler discretization that HCT provides. In fact, one familiar with the

GEAR package will notice a similarity in the notation used in this report.

To do this correctly, one should di�erence the transport coe�cients and any

other explicit terms at the cycle end time. This is not done now.

In summary, HCT is a conventional �nite di�erence code. Accuracy is

shown by the heuristic, but straightforward, method of trying calculations

with di�erent numbers of zones and di�erent timesteps. The variable grid

aids in getting resolution where needed while still keeping the total number

of zones low. We use fully implicit di�erence equations that give as \robust"

an integrator as possible.
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Appendix A

Sample Output

Figure A.1: Test problem involving only hydrodynamics and thermal con-

duction after initial cycle.

80
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Figure A.2: Test problem involving only hydrodynamics and thermal con-

duction after 50 cycles.



APPENDIX A. SAMPLE OUTPUT 82

lists = 3 4 28

cpa1(1) = 5.365 cpa2(1) = -9.186e-1 cpa3(1) = 8.955e-1

cpa4(1) = -4.39e-1 cpa5(1) = 1.06e-1 cpa6(1) = -9.8667e-3

listr = 14 76 77

frc(1) = 2.5e19 frp(1) = -1. frx(1) = 1.19e5

rrc(1) = 1.3e17 rrp(1) = -.75 rrx(1) = 0.

rrc(2) = 0. rrp(2) = 0. rrx(2) = 0.

frc(3) = 9.94e14 frp(3) = 0. frx(3) = 2.2652e4

rrc(3) = 1.67e13 rrp(3) = 0. rrx(3) = -2.0860e3

c0 = 1.e-2 .99 2.e-5 1250. .004 0.

c1 = 1.e-6 .75 .25 300. .004 0.

xdisc = .02

xsprd = .001

pr0 = 1.e6

prbr = 1.e6

nzones = 25

nzxcess = 5

xmax = .3

dzero = 4.58e-7

dczero = 4.16e-7

iprint = 50 0 10 50 50 50

maxdump = 200

lste4 = 1:25

itimer = 1

eta2 = .15

delymn = 20.

euler = 1.

euler2 = -1.

rzflag = 1.

fnertia = .001

itermx = 20

rdelcmx = .1

dt = 1.e-9

dtmax = 1.

timemx = .0004

dtmin = 1.e-20

mxcycle = 1990

$

$

Table A.1: Input deck used to generate ozone test problem.



APPENDIX A. SAMPLE OUTPUT 83

i specie atwt cpa1 cpa2 cpa3 cpa4 cpa5 cpa6 h0

1 o [3] 16. 5.3650e+00 -9.1860e-01 8.9550e-01 -4.3900e-01 1.0600e-01 -9.8667e-03 5.9550e+01

2 o2 [4] 32. 5.1260e+00 6.9420e+00 -5.8620e+00 2.6840e+00 -6.1000e-01 5.4670e-02 0.

3 o3 [28] 48. 5.5610e+00 1.8090e+01 -1.6810e+01 8.0620e+00 -1.9340e+00 1.8400e-01 3.4100e+01

Table A.2: Data associated with the equations of state used in the ozone

test problem.

k reaction frc frp frx rrc rrp rrx

1 o2 = o+o [14] 2.500e+19 -1.00 1.190e+05 1.300e+17 -0.75 0.

2 o+o3 = o2+o2 [76] 3.370e+13 0.00 5.700e+03 0. 0.00 0.

3 o3 = o+o2 [77] 9.940e+14 0.00 2.265e+04 1.670e+13 0.00 -2.086e+03

k reaction irf irs

1 o2 = o+o [14] 4 2 1 0 0 0

2 o+o3 = o2+o2 [76] 2 1 3 2 0 0

3 o3 = o+o2 [77] 3 3 1 2 0 0

Table A.3: Data associated with the reaction set used in the ozone test

problem.
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Figure A.3: Ozone test problem after initial cycle.
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Figure A.4: Ozone test problem after 100 cycles.
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Figure A.5: Ozone test problem after ame has propagated past the middle

of the calculational grid.
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cycle=1000 avgiter=3.41e+00 ircytot=0 irzftot=0 njcbtot=271 time=3.8866e-04 dt=3.96e-07

species limiting dt- 3 zone- 11

slowest converging species- 1 zone- 19

jd r dr ctot rho t u press edotr edotc edotd p*dv/dx vsound

1 0. 3.25e-02 9.78e-06 3.12e-04 1230.01 0. 1.00e+06 2.19e+08 -6.02e+07 3.00e+05 -3.39e+07 6.47e+04

2 3.2503e-02 3.04e-02 9.86e-06 3.15e-04 1219.23 1.10e+00 1.00e+06 2.71e+08 2.76e+06 3.50e+05 -6.00e+07 6.44e+04

3 6.2898e-02 2.67e-02 9.94e-06 3.17e-04 1209.81 2.92e+00 1.00e+06 3.69e+08 1.58e+07 3.81e+05 -8.46e+07 6.42e+04

4 8.9602e-02 2.22e-02 9.99e-06 3.19e-04 1203.53 5.18e+00 1.00e+06 5.07e+08 -2.18e+07 4.29e+05 -1.06e+08 6.40e+04

5 1.1180e-01 1.76e-02 1.00e-05 3.20e-04 1196.70 7.54e+00 1.00e+06 6.83e+08 -4.75e+07 6.36e+05 -1.39e+08 6.39e+04

6 1.2940e-01 1.35e-02 1.01e-05 3.22e-04 1189.03 9.99e+00 1.00e+06 8.94e+08 -6.09e+07 9.90e+05 -1.83e+08 6.37e+04

7 1.4286e-01 1.00e-02 1.02e-05 3.24e-04 1181.49 1.25e+01 1.00e+06 1.13e+09 -7.85e+07 1.37e+06 -2.32e+08 6.35e+04

8 1.5286e-01 7.27e-03 1.02e-05 3.26e-04 1174.70 1.48e+01 1.00e+06 1.41e+09 -1.26e+08 -1.31e+05 -2.84e+08 6.34e+04

9 1.6012e-01 5.20e-03 1.03e-05 3.27e-04 1168.75 1.68e+01 1.00e+06 2.66e+09 -7.27e+08 -4.99e+07 -3.94e+08 6.32e+04

10 1.6533e-01 3.68e-03 1.04e-05 3.29e-04 1161.46 1.89e+01 1.00e+06 1.84e+10 -1.02e+10 -7.03e+08 -1.59e+09 6.30e+04

11 1.6901e-01 2.60e-03 1.06e-05 3.39e-04 1134.68 2.47e+01 1.00e+06 1.23e+11 -7.62e+10 -4.22e+09 -1.04e+10 6.20e+04

12 1.7161e-01 1.90e-03 1.17e-05 3.82e-04 1032.03 5.17e+01 1.00e+06 .94e+11 -1.65e+11 -5.56e+09 -3.30e+10 5.84e+04

13 1.7351e-01 1.60e-03 1.43e-05 4.87e-04 837.93 1.14e+02 1.00e+06 1.41e+11 2.26e+10 2.00e+09 -4.36e+10 5.16e+04

14 1.7511e-01 1.64e-03 1.85e-05 6.46e-04 648.30 1.84e+02 1.00e+06 2.07e+10 1.15e+11 2.13e+09 -3.48e+10 4.49e+04

15 1.7675e-01 1.98e-03 2.46e-05 8.71e-04 489.42 2.41e+02 1.00e+06 1.47e+09 8.64e+10 1.08e+09 -2.25e+10 3.89e+04

16 1.7873e-01 2.66e-03 3.24e-05 1.16e-03 370.80 2.86e+02 1.00e+06 5.46e+07 4.24e+10 3.74e+08 -1.11e+10 3.40e+04

17 1.8138e-01 3.71e-03 3.85e-05 1.38e-03 312.56 3.15e+02 1.00e+06 1.63e+06 1.16e+10 6.28e+07 -3.08e+09 3.13e+04

18 1.8510e-01 5.19e-03 4.00e-05 1.44e-03 300.88 3.27e+02 1.00e+06 2.00e+04 1.21e+09 3.71e+06 -3.24e+08 3.08e+04

19 1.9029e-01 7.15e-03 4.01e-05 1.44e-03 300.04 3.28e+02 1.00e+06 1.11e+02 4.56e+07 8.24e+04 -1.22e+07 3.07e+04

20 1.9743e-01 9.64e-03 4.01e-05 1.44e-03 300.01 3.28e+02 1.00e+06 1.54e+00 1.08e+06 1.47e+03 -2.89e+05 3.07e+04

21 2.0707e-01 1.26e-02 4.01e-05 1.44e-03 300.00 3.28e+02 1.00e+06 1.24e+00 4.27e+04 7.71e+01 -1.17e+04 3.07e+04

22 2.1970e-01 1.59e-02 4.01e-05 1.44e-03 300.00 3.28e+02 1.00e+06 1.24e+00 3.75e+03 9.20e+00 -1.26e+03 3.07e+04

23 2.3564e-01 1.92e-02 4.01e-05 1.44e-03 300.00 3.28e+02 1.00e+06 1.24e+00 5.48e+02 1.38e+00 -4.35e+02 3.07e+04

24 2.5484e-01 2.19e-02 4.01e-05 1.44e-03 300.00 3.28e+02 1.00e+06 1.24e+00 3.84e+01 2.26e-01 -3.42e+02 3.07e+04

25 2.7672e-01 2.34e-02 4.01e-05 1.44e-03 300.00 3.28e+02 1.00e+06 1.24e+00 4.64e+01 5.80e-02 -2.09e+02 3.07e+04

total energy production rate 1.30e+09 -3.09e-06 -1.42e+07 -3.28e+08

total mass= 2.330746e-04 total internal energy= 2.015386e+06

time spent (sec)-cpu= 2.526e+01 i-o= 4.742e+00 sys= 2.218e+00

subroutine sec/call sec/cycle

di�un 1.89e-03 5.93e-03

difped 4.40e-03 1.19e-03

solbtl 9.89e-04 3.37e-03

decbtl 5.68e-03 1.54e-03

rezone 9.10e-04 9.10e-04

ckcnvg 2.62e-04 8.94e-04

remap 1.26e-03 1.26e-03

Table A.4: General Lagrange edit of ozone test problem at cycle 1000.
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zone 12 reaction rate o o2 o3

(concentration) 7.75e-08 1.09e-05 6.45e-07

total rate 2.31e-01 8.55e-01 3.57e-01

net rate 9.82e-03 -1.95e-01 -1.36e-01

di�usion -1.31e-02 -1.91e-01 3.08e-01

hydrodynamics -3.303e+04 -1.11e-02 -4.22e-01 -5.98e-02

chemistry 6.66e-02 3.85e-01 -6.29e-01

3 o3=o+o2 1.205e-01 5.21e-01 1.41e-01 -3.38e-01

2 o+o3=o2+o2 1.046e-01 -4.52e-01 2.45e-01 -2.93e-01

zone 12 reaction rate temp

(concentration) 1032.03

total rate 2.29e+08

net rate 2.79e+07

conduction -2.23e-01

di�usion -7.52e-03

hydrodynamics -3.303e+04 -4.47e-02

chemistry 3.97e-01

3 o3=o+o2 1.205e-01 -1.64e-01

2 o+o3=o2+o2 1.046e-01 5.60e-01

Table A.5: Lagrange edit of rates a�ecting the physical variables in zone 12

for ozone test problem at cycle 1000.
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zone 4 reaction rate o o2 o3

(concentration) 7.39e-08 9.92e-06 2.95e-10

total rate 6.72e-04 1.75e-03 5.86e-04

net rate -2.03e-04 -9.54e-04 -9.61e-07

di�usion 1.30e-02 -2.54e-03 7.66e-05

hydrodynamics -1.062e+02 -1.17e-02 -6.03e-01 -5.35e-05

chemistry -3.03e-01 5.92e-02 -1.66e-03

-3 o+o2=o3 2.923e-04 -4.35e-01 -1.67e-01 4.99e-01

3 o3=o+o2 2.256e-04 3.36e-01 1.29e-01 -3.85e-01

2 o+o3=o2+o2 6.772e-05 -1.01e-01 7.76e-02 -1.16e-01

-1 o+o=o2 3.467e-05 -1.03e-01 1.99e-02 0.

zone 4 reaction rate temp

(concentration) 1203.53

total rate 3.98e+05

net rate 1.40e+05

conduction -2.01e-02

di�usion 3.96e-04

hydrodynamics -1.062e+02 -9.81e-02

chemistry 4.68e-01

-3 o+o2=o3 2.923e-04 2.68e-01

3 o3=o+o2 2.256e-04 -2.06e-01

2 o+o3=o2+o2 6.772e-05 2.48e-01

-1 o+o=o2 3.467e-05 1.59e-01

Table A.6: Lagrange edit of rates a�ecting the physical variables in zone 4

for ozone test problem at cycle 1000.
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Figure A.6: Velocity of ame relative to the unburned gas in ozone test

problem.
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Figure A.7: Ozone test problem just after steady-state propagating ame

has been established.
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Figure A.8: Comparison of calculated ame velocities as a function of time

for 25-zone ozone test problem (curve f1g) with velocities from calculations

of the same problem run with 35 zones (curve f2g) and 50 zones (curve f3g).
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Figure A.9: Comparison of calculated temperature pro�le at 400�sec for

25-zone ozone test problem (curve f1g) with pro�les from calculations of

the same problem using 35 zones (curve f2g) and 50 zones (curve f3g).
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Figure A.10: Comparison of calculated ame velocities as a function of

time for the 25-zone ozone test problem (curve f1g) with calculations of

the same problem with varying running parameters. Curve f2g represents a
calculation with reduced timesteps, curve f3g represents a calculation with

more zones in the reaction region, and curve f4g represents a calculation

with more total zones.
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cdat version 149 made 11/01/88

i specie atwt cpa1 cpa2 cpa3 cpa4 cpa5 cpa6 h0

1 h [ 1] 1. 4.9680e+00 0. 0. 0. 0. 0. 5.2100e+01

2 h2 [ 2] 2. 7.7390e+00 -3.1923e+00 4.3373e+00 -2.1040e+00 4.8267e-01 -4.3733e-02 0.

3 o [ 3] 16. 5.3650e+00 -9.1860e-01 8.9550e-01 -4.3900e-01 1.0600e-01 -9.8667e-03 5.9553e+01

4 o2 [ 4] 32. 5.1260e+00 6.9420e+00 -5.8620e+00 2.6840e+00 -6.1000e-01 5.4670e-02 0.

5 oh [ 5] 17. 8.0760e+00 -4.4880e+00 6.4050e+00 -3.4300e+00 8.5070e-01 -8.1330e-02 9.4920e+00

6 h2o [ 6] 18. 8.0490e+00 -1.6200e+00 6.4140e+00 -3.8950e+00 9.9930e-01 -9.6270e-02 -5.7800e+01

7 co [ 12] 28. 6.0700e+00 2.1550e+00 1.9370e-01 -7.2900e-01 2.7330e-01 -3.2270e-02 -2.6420e+01

8 hco [ 13] 29. 5.0870e+00 1.0950e+01 -5.9930e+00 1.6200e+00 -1.8870e-01 4.8000e-03 1.0400e+01

9 co2 [ 14] 44. 5.2750e+00 1.5610e+01 -1.1870e+01 4.9420e+00 -1.0740e+00 9.5200e-02 -9.4050e+01

10 ch3 [ 15] 15. 7.0280e+00 7.1880e+00 2.1020e+00 -3.1530e+00 1.0390e+00 -1.1440e-01 3.4820e+01

11 ch4 [ 16] 16. 1.8010e+00 2.1890e+01 -6.5910e+00 -4.8770e-01 6.3530e-01 -9.1470e-02 -1.7890e+01

12 ho2 [ 17] 33. 5.8310e+00 9.8920e+00 -6.2280e+00 2.2960e+00 -4.6500e-01 3.9700e-02 5.0000e+00

13 h2o2 [ 18] 34. 9.3600e+00 6.1930e+00 1.9430e+00 -3.7270e+00 1.4300e+00 -1.7600e-01 -3.2530e+01

14 ch2o [ 19] 30. 2.3830e+00 2.1200e+01 -1.1630e+01 3.2870e+00 -4.4700e-01 2.1100e-02 -2.7700e+01

15 ch3o [ 20] 31. 4.2400e-01 3.1660e+01 -1.8800e+01 6.1520e+00 -1.0660e+00 7.6500e-02 3.0000e+00

Table A.7: Data associated with the equations of state used in the methane

test problem.
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k reaction frc frp frx rrc rrp rrx

1 ch4 = ch3+h [ 1] 1.400e+17 0.00 8.840e+04 2.840e+11 1.00 -1.952e+04

2 ch4+h = ch3+h2 [ 2] 1.250e+14 0.00 1.190e+04 4.800e+12 0.00 1.143e+04

3 ch4+oh = ch3+h2o [ 3] 3.320e+12 0.00 3.772e+03 5.500e+11 0.00 1.845e+04

4 ch4+o = ch3+oh [ 4] 2.000e+13 0.00 9.200e+03 3.340e+11 0.00 6.640e+03

5 hco+oh = co+h2o [ 6] 1.000e+14 0.00 0. 2.800e+15 0.00 1.051e+05

6 oh+co = h+co2 [ 7] 2.520e+11 0.00 1.080e+03 2.835e+13 0.00 2.342e+04

7 h+o2 = o+oh [ 8] 2.200e+14 0.00 1.679e+04 1.740e+13 0.00 6.770e+02

8 h2+o = h+oh [ 9] 1.800e+10 1.00 8.900e+03 7.890e+09 1.00 7.003e+03

9 o+h2o = oh+oh [ 10] 6.800e+13 0.00 1.835e+04 6.900e+12 0.00 1.100e+03

10 h+h2o = oh+h2 [ 11] 9.500e+13 0.00 2.030e+04 2.200e+13 0.00 5.146e+03

11 hco = h+co [ 12] 2.500e+14 0.00 1.900e+04 8.700e+10 1.00 1.553e+03

12 oh = o+h [ 13] 7.500e+15 0.00 1.022e+05 8.000e+15 0.00 0.

13 o2 = o+o [ 14] 2.500e+19 -1.00 1.190e+05 1.300e+17 -0.75 0.

14 h2 = h+h [ 15] 3.100e+05 0.00 1.040e+05 1.200e+15 0.00 0.

15 o2+h2 = oh+oh [ 16] 7.940e+14 0.00 4.500e+04 2.760e+13 0.00 2.686e+04

16 h2o = h+oh [ 25] 2.200e+16 0.00 1.050e+05 2.690e+11 1.00 -1.748e+04

17 ho2 = h+o2 [ 26] 1.115e+19 -1.00 4.873e+04 1.725e+15 0.00 -1.000e+03

18 co2 = co+o [ 27] 5.500e+21 -1.00 1.318e+05 5.900e+15 0.00 4.093e+03

19 co2+o = co+o2 [ 28] 2.780e+12 0.00 4.383e+04 3.140e+11 0.00 3.760e+04

20 hco+h = co+h2 [ 29] 2.000e+14 0.00 0. 1.310e+15 0.00 9.000e+04

21 o+hco = co+oh [ 30] 1.000e+14 0.00 0. 2.880e+14 0.00 8.790e+04

22 ch2o = hco+h [ 31] 5.000e+16 0.00 7.200e+04 2.120e+11 1.00 -2.077e+04

23 ch2o+oh = hco+h2o [ 32] 5.400e+14 0.00 6.300e+03 1.870e+14 0.00 3.612e+04

24 ch2o+h = hco+h2 [ 33] 1.350e+13 0.00 3.760e+03 1.070e+12 0.00 1.843e+04

25 ch2o+o = hco+oh [ 34] 5.000e+13 0.00 4.600e+03 1.750e+12 0.00 1.717e+04

26 ch3+oh = ch2o+h2 [ 35] 4.000e+12 0.00 0. 1.200e+14 0.00 7.172e+04

27 ch3+o = ch2o+h [ 36] 1.300e+14 0.00 2.000e+03 1.700e+15 0.00 7.163e+04

28 ch3+o2 = ch3o+o [ 37] 4.800e+13 0.00 2.900e+04 3.040e+14 0.00 7.330e+02

29 ch2o+ch3 = hco+ch4 [ 38] 1.000e+10 0.50 6.000e+03 2.090e+10 0.50 2.114e+04

30 hco+ch3 = ch4+co [ 39] 3.000e+11 0.50 0. 5.140e+13 0.50 9.047e+04

31 ch3o = ch2o+h [ 40] 5.000e+13 0.00 2.100e+04 9.910e+08 1.00 -2.563e+03

32 ho2 = o+oh [ 41] 8.180e+21 -1.00 6.585e+0 1.000e+17 0.00 0.

33 ho2+o = o2+oh [ 42] 5.000e+13 0.00 1.000e+03 6.420e+13 0.00 5.661e+04

34 hco+ho2 = ch2o+o2 [ 43] 1.000e+14 0.00 3.000e+03 3.660e+15 0.00 4.604e+04

35 ch3o+o2 = ch2o+ho2 [ 44] 1.000e+12 0.00 6.000e+03 1.280e+11 0.00 3.217e+04

36 ch3+ho2 = ch4+o2 [ 45] 1.000e+12 0.00 4.000e+02 7.630e+13 0.00 5.859e+04

37 hco+o2 = co+ho2 [ 46] 3.000e+12 0.00 7.000e+03 6.720e+12 0.00 3.929e+04

38 h+ho2 = oh+oh [ 47] 2.500e+14 0.00 1.900e+03 2.530e+13 0.00 4.140e+04

39 h+ho2 = h2+o2 [ 48] 2.500e+13 0.00 7.000e+02 7.310e+13 0.00 5.841e+04

40 oh+ho2 = h2o+o2 [ 49] 5.000e+13 0.00 1.000e+03 6.330e+14 0.00 7.386e+04

41 h2o2+o2 = ho2+ho2 [ 50] 4.000e+13 0.00 4.264e+04 1.000e+13 0.00 1.000e+03

42 h2o2 = oh+oh [ 51] 1.200e+17 0.00 4.580e+04 4.730e+11 1.00 -6.065e+03

43 ho2+h2 = h2o2+h [ 52] 1.245e+12 0.00 1.988e+04 1.700e+12 0.00 3.800e+03

44 ch4+ho2 = ch3+h2o2 [ 53] 2.000e+13 0.00 1.800e+04 1.050e+12 0.00 1.448e+03

45 ch2o+ho2 = hco+h2o2 [ 54] 5.000e+12 0.00 6.300e+03 5.450e+11 0.00 4.893e+03

Table A.8: Data associated with the reaction set used in the methane test

problem.
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k reaction irf irs

1 ch4 = ch3+h [ 1] 3 11 10 1 0 0

2 ch4+h = ch3+h2 [ 2] 1 11 1 10 2 0

3 ch4+oh = ch3+h2o [ 3] 1 11 5 10 6 0

4 ch4+o = ch3+oh [ 4] 1 11 3 10 5 0

5 hco+oh = co+h2o [ 6] 1 8 5 7 6 0

6 oh+co = h+co2 [ 7] 1 5 7 1 9 0

7 h+o2 = o+oh [ 8] 1 1 4 3 5 0

8 h2+o = h+oh [ 9] 1 2 3 1 5 0

9 o+h2o = oh+oh [ 10] 2 3 6 5 0 0

10 h+h2o = oh+h2 [ 11] 1 1 6 5 2 0

11 hco = h+co [ 12] 3 8 1 7 0 0

12 oh = o+h [ 13] 3 5 3 1 0 0

13 o2 = o+o [ 14] 4 4 3 0 0 0

14 h2 = h+h [ 15] 4 2 1 0 0 0

15 o2+h2 = oh+oh [ 16] 2 4 2 5 0 0

16 h2o = h+oh [ 25] 3 6 1 5 0 0

17 ho2 = h+o2 [ 26] 3 12 1 4 0 0

18 co2 = co+o [ 27] 3 9 7 3 0 0

19 co2+o = co+o2 [ 28] 1 9 3 7 4 0

20 hco+h = co+h2 [ 29] 1 8 1 7 2 0

21 o+hco = co+oh [ 30] 1 3 8 7 5 0

22 ch2o = hco+h [ 31] 3 14 8 1 0 0

23 ch2o+oh = hco+h2o [ 32] 1 14 5 8 6 0

24 ch2o+h = hco+h2 [ 33] 1 14 1 8 2 0

25 ch2o+o = hco+oh [ 34] 1 14 3 8 5 0

26 ch3+oh = ch2o+h2 [ 35] 1 10 5 14 2 0

27 ch3+o = ch2o+h [ 36] 1 10 3 14 1 0

28 ch3+o2 = ch3o+o [ 37] 1 10 4 15 3 0

29 ch2o+ch3 = hco+ch4 [ 38] 1 14 10 8 11 0

30 hco+ch3 = ch4+co [ 39] 1 8 10 11 7 0

31 ch3o = ch2o+h [ 40] 3 15 14 1 0 0

32 ho2 = o+oh [ 41] 3 12 3 5 0 0

33 ho2+o = o2+oh [ 42] 1 12 3 4 5 0

34 hco+ho2 = ch2o+o2 [ 43] 1 8 12 14 4 0

35 ch3o+o2 = ch2o+ho2 [ 44] 1 15 4 14 12 0

36 ch3+ho2 = ch4+o2 [ 45] 1 10 12 11 4 0

37 hco+o2 = co+ho2 [ 46] 1 8 4 7 12 0

38 h+ho2 = oh+oh [ 47] 2 1 12 5 0 0

39 h+ho2 = h2+o2 [ 48] 1 1 12 2 4 0

40 oh+ho2 = h2o+o2 [ 49] 1 5 12 6 4 0

41 h2o2+o2 = ho2+ho2 [ 50] 2 13 4 12 0 0

42 h2o2 = oh+oh [ 51] 4 13 5 0 0 0

43 ho2+h2 = h2o2+h [ 52] 1 12 2 13 1 0

44 ch4+ho2 = ch3+h2o2 [ 53] 1 11 12 10 13 0

45 ch2o+ho2 = hco+h2o2 [ 54] 1 14 12 8 13 0

Table A.8: Data associated with the reaction set used in the methane test

problem: continued.
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lists = 1:6 12:20

cpa1(2)=7.739 5.365 cpa2(2)=-3.1923 -9.186e-1

cpa3(2)=4.3373 8.955e-1 cpa4(2)=-2.104 -4.39e-1

cpa5(2)=4.8267e-1 1.06e-1 cpa6(2)=-4.3733e-2 -9.8667e-3

h0(3)=5.9553e+1

h0(12)=5.

cpa1(13)=9.36 cpa2(13)=6.193 cpa3(13)=1.943

cpa4(13)=-3.727 cpa5(13)=1.43 cpa6(13)=-1.76e-1

h0(13)=-3.253e1

h0(15)=3.

listr = 1:4 6:16 25:54

rrc(1)=2.84e11 rrp(1)=1. rrx(1)=-1.9515e4

frc(4)=2.e13 frp(4)=0. frx(4)=9.2e3

rrc(4)=3.34e11 rrp(4)=0. rrx(4)=6.64e3

frc(6) = 2.52e11 frp(6) = 1.e-99 frx(6) = 1.08e3

rrc(6) = 2.835e13 rrp(6) = 1.e-99 rrx(6) = 2.342e4

rrc(8)=7.89e9 rrp(8)=1. rrx(8)=7.003e3

rrc(9)=6.9e12

frc(11) = 2.5e14 rrc(11) = 8.7e10

frc(12)=7.5e15 frp(12)=0. frx(12)=1.0222e5 rrc(12)=8.e15

frc(13)=2.5e19 frp(13)=-1. frx(13)=1.19e5

rrc(13)=1.3e17 rrp(13)=-.75 rrx(13)=0.

frc(14)=3.1e5 frp(14)=0. frx(14)=1.04e5

rrc(14)=1.2e15 rrp(14)=0. rrx(14)=0.

frc(15)=7.94e14 frp(15)=0. frx(15)=4.5e4

rrc(15)=2.76e13 rrp(15)=0. rrx(15)=2.6856e4

rrc(16)=2.69e11 rrp(16)=1. rrx(16)=-1.7485e4

frp(17)=-1. frx(17)=4.8733e4

frc(17) = 1.115e19 rrc(17) = 1.725e15

rrx(18)=4.093e3

frc(22)=5.e16 5.4e14 1.35e13 frp(22)=0. 0. 0.

frx(22)=7.2e4 6.3e3 3.76e3

rrc(22)=2.12e11 1.87e14 1.07e12 rrp(22)=1. 0. 0.

rrx(22)=-2.0770e4 3.6123e4 1.843e4

frx(42)=4.58e4 1.988e4

rrc(42)=4.73e11 rrp(42)=1. rrx(42)=-6.065e3

frc(43)=1.245e12 rrx(43)=3.8e3

rrc(44)=1.05e12 rrx(44)=1.448e3

Table A.9: Input deck used to generate methane test problem.
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frx(37)=7.e3 rrx(37)=3.9286e4

rrc(38)=2.53e13 7.31e13

rrp(38)=0. 0.

rrx(38)=4.1399e4 5.8409e4

frc(28) = 4.8e13 rrc(28) = 3.04e14

frc(37) = 3.0e12 rrc(37) = 6.72e12

frc(45) = 5.0e12 frx(45) = 6.3e3

rrc(45) = 5.45e11 rrx(45) = 4.893e3

c = 15(1.e-6) 300. .2 0.

c(4) = .905

c(11) = .095

pr0 = 5.26e4

prbr = 5.26e4

s0 = 1.

s1 = 0.

xsprd = .04

nzones = 25

xmax = 10.0

dzero = 4.58e-7

dczero = 4.16e-7

sorxmax = 0.

sorsprd = .04

sorpcc = 225.

tig = 3.e-4

iprint = 100 0 5 100 100 100

lste4 = 1:25

itimer=1

eta2 = .15

delymn = 300.

euler = 1.

euler2 = -1.

rzflag = 1.

itermx = 20

rdelcmx = .1

dt = 1.e-6

dtmax = 1.

dtmin = 1.e-20

mxcycle=1200

mxcycle = 1990

iprint(3)=10

timemx = .03

nzxcess = 8

$ $

Table A.9: Input deck used to generate methane test problem: continued.
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Figure A.11: Methane test problem after initial cycle.



APPENDIX A. SAMPLE OUTPUT 101

Figure A.12: Left tenth of grid of the methane test problem at early stages

of initiation.



APPENDIX A. SAMPLE OUTPUT 102

Figure A.13: Left tenth of grid of the methane test problem as ame begins

to propagate away from source region.
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Figure A.14: Methane test problem after propagating ame has moved

across most of the grid.
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hct output vers. 84c 12/20/88

cycle=1500 avgiter= 4.71e+00 ircytot=0 irzftot=0 njcbtot=1019 time=2.9419e-02 dt=3.14e-05

species limiting dt- 13 zone- 13

slowest converging species- 1 zone- 17

jd r dr ctot rho t u press edotr edotc edotd p*dv/dx vsound

1 0. 1.26e+00 2.81e-07 8.44e-06 2248.96 0. 5.26e+04 2.69e+04 -1.77e+05 -5.09e+03 3.53e+04 8.81e+04

2 1.2553e+00 1.18e+00 2.85e-07 8.57e-06 2219.50 -8.43e-01 5.26e+04 6.71e+04 -7.29e+04 -2.15e+02 3.32e+03 8.74e+04

3 2.4397e+00 1.06e+00 2.90e-07 8.74e-06 2181.56 -9.18e-01 5.26e+04 1.79e+05 2.26e+04 3.70e+03 -3.87e+04 8.65e+04

4 3.4996e+00 9.05e-01 2.94e-07 8.87e-06 2150.67 -1.39e-01 5.26e+04 4.35e+05 9.10e+03 5.77e+03 -8.13e+04 8.59e+04

5 4.4043e+00 7.41e-01 2.98e-07 8.97e-06 2125.35 1.26e+00 5.26e+04 9.45e+05 -1.31e+05 8.50e+03 -1.42e+05 8.55e+04

6 5.1449e+00 5.86e-01 3.02e-07 9.07e-06 2097.48 3.27e+00 5.26e+04 1.84e+06 -3.92e+05 1.45e+04 -2.50e+05 8.50e+04

7 5.7306e+00 4.51e-01 3.07e-07 9.20e-06 2061.88 6.05e+00 5.26e+04 3.23e+06 -7.84e+05 2.44e+04 -4.21e+05 8.45e+04

8 6.1816e+00 3.41e-01 3.13e-07 9.37e-06 2018.04 9.65e+00 5.26e+04 4.96e+06 -1.22e+06 3.46e+04 -6.46e+05 8.38e+04

9 6.5223e+00 2.54e-01 3.21e-07 9.56e-06 1969.87 1.38e+01 5.26e+04 6.66e+06 -1.53e+06 3.42e+04 -8.93e+05 8.30e+04

10 6.7764e+00 1.88e-01 3.29e-07 9.76e-06 1923.03 1.82e+01 5.26e+04 1.25e+07 -5.01e+06 -1.21e+04 -1.36e+06 8.22e+04

11 6.9642e+00 1.38e-01 3.38e-07 1.00e-05 1868.82 2.30e+01 5.26e+04 5.30e+07 -3.45e+07 -3.47e+05 -3.64e+06 8.12e+04

12 7.1024e+00 1.03e-01 3.61e-07 1.07e-05 1754.16 3.26e+01 5.26e+04 1.38e+08 -9.06e+07 -1.31e+06 -9.72e+06 7.88e+04

13 7.2056e+00 8.20e-02 4.10e-07 1.22e-05 1544.17 5.16e+01 5.26e+04 1.40e+08 -6.19e+07 -1.59e+06 -1.65e+07 7.39e+04

14 7.2877e+00 7.33e-02 4.89e-07 1.46e-05 1292.86 7.74e+01 5.26e+04 5.55e+07 3.15e+07 -8.06e+05 -1.90e+07 6.76e+04

15 7.3609e+00 7.36e-02 6.00e-07 1.80e-05 1053.50 1.04e+02 5.26e+04 1.04e+07 6.72e+07 -2.05e+05 -1.73e+07 6.11e+04

16 7.4345e+00 8.12e-02 7.56e-07 2.28e-05 836.08 1.28e+02 5.26e+04 1.41e+06 6.00e+07 9.03e+04 -1.43e+07 5.46e+04

17 7.5157e+00 9.69e-02 9.92e-07 3.00e-05 637.86 1.50e+02 5.26e+04 1.62e+05 4.38e+07 1.61e+05 -1.07e+07 4.80e+04

18 7.6126e+00 1.23e-01 1.35e-06 4.12e-05 467.07 1.70e+02 5.26e+04 1.10e+04 2.66e+07 9.98e+04 -6.93e+06 4.16e+04

19 7.7357e+00 1.62e-01 1.78e-06 5.43e-05 354.65 1.86e+02 5.26e+04 1.36e+03 1.06e+07 3.18e+04 -2.96e+06 3.67e+04

20 7.8973e+00 2.11e-01 2.02e-06 6.15e-05 313.15 1.95e+02 5.26e+04 2.44e+02 2.12e+06 5.24e+03 -6.13e+05 3.46e+04

21 8.1087e+00 2.70e-01 2.09e-06 6.36e-05 302.89 1.98e+02 5.26e+04 9.95e+01 3.05e+05 6.00e+02 -8.69e+04 3.41e+04

22 8.3782e+00 3.32e-01 2.10e-06 6.41e-05 300.71 1.98e+02 5.26e+04 7.86e+01 4.08e+04 4.21e+01 -9.96e+03 3.40e+04

23 8.7101e+00 3.91e-01 2.11e-06 6.42e-05 300.23 1.98e+02 5.26e+04 7.50e+01 6.10e+03 7.21e-01 -3.85e+02 3.40e+04

24 9.1015e+00 4.39e-01 2.11e-06 6.42e-05 300.13 1.98e+02 5.26e+04 7.43e+01 9.53e+02 -1.24e-01 3.15e+02 3.40e+04

25 9.5407e+00 4.66e-01 2.11e-06 6.42e-05 300.09 1.98e+02 5.26e+04 7.41e+01 3.63e+02 -3.18e-02 -6.17e+02 3.40e+04

total energy production rate 4.77e+07 1.71e-07 -2.99e+05 -1.04e+07

total mass= 2.207584e-04 total internal energy= -9.594495e+05

time spent (sec)-cpu= 1.597e+02 i-o= 1.253e+01 sys= 4.604e+00

subroutine sec/call sec/cycle

di�un 7.57e-03 3.05e-02

difped 2.51e-02 1.71e-02

solbtl 2.01e-03 9.46e-03

decbtl 3.12e-02 2.12e-02

rezone 5.47e-04 5.47e-04

ckcnvg 6.77e-04 3.19e-03

remap 2.18e-03 2.17e-03

Table A.10: General Lagrange edit of methane test problem at cycle 1500.
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specie mole fractions

zone h h2 o o2 oh h2o co

1 1.25e-03 1.40e-03 1.36e-02 6.97e-01 2.20e-02 1.72e-01 3.80e-03

2 1.00e-03 1.20e-03 1.15e-02 7.00e-01 1.99e-02 1.74e-01 3.20e-03

3 7.82e-04 1.01e-03 9.57e-03 7.02e-01 1.76e-02 1.76e-01 2.64e-03

4 7.25e-04 9.54e-04 8.93e-03 7.02e-01 1.66e-02 1.77e-01 2.49e-03

5 8.30e-04 1.03e-03 9.63e-03 7.01e-01 1.68e-02 1.77e-01 2.77e-03

6 1.09e-03 1.22e-03 1.14e-02 6.99e-01 1.78e-02 1.76e-01 3.52e-03

7 1.52e-03 1.49e-03 1.39e-02 6.96e-01 1.89e-02 1.75e-01 5.05e-03

8 2.02e-03 1.75e-03 1.63e-02 6.93e-01 1.94e-02 1.74e-01 8.28e-03

9 2.29e-03 1.85e-03 1.72e-02 6.93e-01 1.89e-02 1.73e-01 1.47e-02

10 2.01e-03 1.68e-03 1.53e-02 6.97e-01 1.68e-02 1.74e-01 2.52e-02

11 1.30e-03 1.46e-03 1.06e-02 7.07e-01 1.31e-02 1.73e-01 3.71e-02

12 7.31e-04 1.90e-03 5.54e-03 7.27e-01 8.00e-03 1.63e-01 4.36e-02

13 4.14e-04 2.81e-03 2.00e-03 7.59e-01 3.26e-03 1.37e-01 4.01e-02

14 1.85e-04 2.90e-03 4.62e-04 7.94e-01 8.45e-04 1.05e-01 3.14e-02

15 5.92e-05 2.28e-03 7.21e-05 8.25e-01 1.48e-04 7.55e-02 2.26e-02

16 9.79e-06 1.54e-03 7.26e-06 8.52e-01 1.60e-05 5.03e-02 1.51e-02

17 6.24e-08 9.01e-04 5.84e-07 8.73e-01 1.03e-06 2.94e-02 8.82e-03

18 1.09e-10 4.18e-04 5.33e-08 8.90e-01 5.35e-08 1.36e-02 4.08e-03

19 6.93e-12 1.36e-04 8.81e-09 9.00e-01 2.79e-09 4.39e-03 1.32e-03

20 6.49e-12 2.95e-05 1.38e-08 9.04e-01 5.04e-10 9.30e-04 2.82e-04

21 6.76e-12 5.06e-06 2.08e-08 9.05e-01 6.17e-10 1.23e-04 3.87e-05

22 6.14e-12 1.65e-06 2.36e-08 9.05e-01 7.07e-10 1.41e-05 5.87e-06

23 5.94e-12 1.15e-06 2.43e-08 9.05e-01 7.35e-10 4.18e-06 2.48e-06

24 5.90e-12 1.05e-06 2.45e-08 9.05e-01 7.43e-10 2.85e-06 1.93e-06

25 5.89e-12 1.02e-06 2.46e-08 9.05e-01 7.45e-10 2.54e-06 1.79e-06

avg 3.35e-04 4.54e-04 3.43e-03 8.42e-01 5.43e-03 5.42e-02 2.65e-03

zone hco co2 ch3 ch4 ho2 h2o2 ch2o

1 5.16e-11 8.84e-02 3.69e-20 1.85e-21 5.78e-06 1.33e-07 1.78e-13

2 3.61e-11 8.94e-02 2.25e-20 3.29e-20 5.30e-06 1.27e-07 1.28e-13

3 2.38e-11 9.04e-02 7.46e-19 1.10e-17 4.79e-06 1.22e-07 8.60e-14

4 1.98e-11 9.08e-02 1.66e-16 2.53e-15 4.56e-06 1.28e-07 6.93e-14

5 2.20e-11 9.07e-02 2.50e-14 3.92e-13 4.65e-06 1.52e-07 8.03e-14

6 3.15e-11 9.00e-02 2.60e-12 4.27e-11 5.02e-06 2.00e-07 1.22e-12

7 9.04e-11 8.84e-02 1.94e-10 3.34e-09 5.58e-06 2.79e-07 9.67e-11

8 2.32e-09 8.51e-02 1.01e-08 1.85e-07 6.13e-06 3.91e-07 5.80e-09

9 8.28e-08 7.87e-02 3.55e-07 6.78e-06 6.36e-06 5.06e-07 2.23e-07

10 1.69e-06 6.83e-02 7.46e-06 1.48e-04 6.30e-06 5.54e-07 4.78e-06

11 1.61e-05 5.49e-02 8.13e-05 1.65e-03 9.69e-06 5.23e-07 4.88e-05

12 6.28e-05 4.17e-02 4.03e-04 8.55e-03 3.42e-05 1.36e-06 2.29e-04

13 1.02e-04 3.09e-02 9.41e-04 2.28e-02 9.67e-05 1.35e-05 5.65e-04

14 7.11e-05 2.26e-02 1.24e-03 3.98e-02 1.42e-04 3.85e-05 8.15e-04

15 2.17e-05 1.61e-02 1.08e-03 5.57e-02 1.10e-04 4.21e-05 7.45e-04

16 3.39e-06 1.07e-02 7.05e-04 6.94e-02 6.22e-05 3.27e-05 5.27e-04

17 3.72e-07 6.24e-03 3.97e-04 8.06e-02 2.88e-05 2.04e-05 3.12e-04

18 4.47e-08 2.88e-03 1.81e-04 8.89e-02 1.09e-05 1.00e-05 1.46e-04

19 8.84e-09 9.26e-04 5.89e-05 9.33e-02 3.69e-06 3.97e-06 4.84e-05

20 1.60e-08 1.95e-04 1.38e-05 9.46e-02 1.80e-06 1.84e-06 1.16e-05

21 2.59e-08 2.60e-05 3.89e-06 9.49e-02 1.46e-06 1.38e-06 3.48e-06

22 3.01e-08 3.65e-06 2.35e-06 9.50e-02 1.41e-06 1.29e-06 2.17e-06

23 3.14e-08 1.45e-06 2.07e-06 9.50e-02 1.40e-06 1.27e-06 1.92e-06

24 3.17e-08 1.10e-06 2.01e-06 9.50e-02 1.40e-06 1.26e-06 1.87e-06

25 3.18e-08 1.02e-06 2.00e-06 9.50e-02 1.40e-06 1.26e-06 1.86e-06

avg 1.45e-06 2.61e-02 3.94e-05 6.57e-02 5.71e-06 2.32e-06 2.84e-05

Table A.11: Edit of species mole fractions in methane test problem at cycle

1500.



APPENDIX A. SAMPLE OUTPUT 106

specie mole fractions

zone ch3o

1 5.48e-22

2 3.60e-22

3 1.08e-20

4 2.32e-18

5 3.04e-16

6 2.53e-14

7 1.41e-12

8 5.55e-11

9 1.57e-09

10 3.14e-08

11 3.92e-07

12 2.17e-06

13 4.22e-06

14 2.96e-06

15 7.79e-07

16 1.07e-07

17 1.32e-08

18 4.66e-09

19 1.64e-08

20 3.00e-08

21 3.61e-08

22 3.78e-08

23 3.84e-08

24 3.85e-08

25 3.86e-08

avg 7.71e-08

total moles in problem- 7.2783e-06

Table A.11: Edit of species mole fractions in methane test problem at cycle

1500: continued.
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zone 13 reaction rate h h2 o

(concentration) 1.70e-10 1.15e-09 8.19e-10

total rate 1.14e-04 1.95e-05 1.23e-04

net rate 1.63e-07 -7.92e-07 1.47e-06

di�usion 1.25e-03 -9.43e-02 3.32e-02

hydrodynamics -3.142e+02 -4.66e-04 -1.86e-02 -2.09e-03

chemistry 6.49e-04 7.21e-02 -1.92e-02

7 h+o2=o+oh 4.877e-05 -4.27e-01 0. 3.96e-01

27 ch3+o=ch2o+h 2.125e-05 1.86e-01 0. -1.73e-01

-7 o+oh=h+o2 1.524e-05 1.33e-01 0. -1.24e-01

11 hco=h+co 8.868e-06 7.76e-02 0. 0.

-9 oh+oh=o+h2o 8.583e-06 0. 0. 6.98e-02

9 o+h2o=oh+oh 7.893e-06 0. 0. -6.42e-02

4 ch4+o=ch3+oh 7.619e-06 0. 0. -6.19e-02

-10 oh+h2=h+h2o 6.314e-06 5.52e-02 -3.25e-01 0.

2 ch4+h=ch3+h2 4.090e-06 -3.58e-02 2.10e-01 0.

6 oh+co=h+co2 3.887e-06 3.40e-02 0. 0.

21 o+hco=co+oh 3.402e-06 0. 0. -2.77e-02

25 ch2o+o=hco+oh 2.116e-06 0. 0. -1.72e-02

26 ch3+oh=ch2o+h2 2.057e-06 0. 1.06e-01 0.

8 h2+o=h+oh 1.441e-06 1.26e-02 -7.41e-02 -1.17e-02

20 hco+h=co+h2 1.395e-06 -1.22e-02 7.17e-02 0.

10 h+h2o=oh+h2 1.210e-06 -1.06e-02 6.22e-02 0.

-8 h+oh=h2+o 2.815e-07 -2.46e-03 1.45e-02 2.29e-03

zone 13 reaction rate o2 oh h2o

(concentration) 3.11e-07 1.33e-09 5.61e-08

total rate 1.80e-04 1.75e-04 1.04e-04

net rate -1.22e-04 2.19e-06 7.44e-06

di�usion 5.64e-02 2.64e-02 -2.07e-01

hydrodynamics -3.142e+02 -5.42e-01 -2.40e-03 -1.69e-01

chemistry -1.92e-01 -1.15e-02 4.48e-01

7 h+o2=o+oh 4.877e-05 -2.71e-01 2.79e-01 0.

23 ch2o+oh=hco+h2o 2.126e-05 0. -1.22e-01 2.05e-01

-7 o+oh=h+o2 1.524e-05 8.45e-02 -8.72e-02 0.

3 ch4+oh=ch3+h2o 1.208e-05 0. -6.92e-02 1.16e-01

-9 oh+oh=o+h2o 8.583e-06 0. -9.83e-02 8.26e-02

9 o+h2o=oh+oh 7.893e-06 0. 9.04e-02 -7.59e-02

4 ch4+o=ch3+oh 7.619e-06 0. 4.36e-02 0.

-10 oh+h2=h+h2o 6.314e-06 0. -3.61e-02 6.07e-02

5 hco+oh=co+h2o 5.542e-06 0. -3.17e-02 5.33e-02

37 hco+o2=co+ho2 3.996e-06 -2.22e-02 0. 0.

6 oh+co=h+co2 3.887e-06 0. -2.22e-02 0.

21 o+hco=co+oh 3.402e-06 0. 1.95e-02 0.

25 ch2o+o=hco+oh 2.116e-06 0. 1.21e-02 0.

26 ch3+oh=ch2o+h2 2.057e-06 0. -1.18e-02 0.

40 oh+ho2=h2o+o2 1.902e-06 1.05e-02 -1.09e-02 1.83e-02

10 h+h2o=oh+h2 1.210e-06 0. 6.92e-03 -1.16e-02

38 h+ho2=oh+oh 8.928e-07 0. 1.02e-02 0.

Table A.12: Lagrange edit of rates a�ecting physical variables in zone 13 for

methane test problem at cycle 1500.
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zone 13 reaction rate co hco co2

(concentration) 1.64e-08 4.19e-11 1.26e-08

total rate 4.62e-05 4.73e-05 1.16e-05

net rate 6.00e-07 -1.44e-08 3.62e-06

di�usion -2.97e-01 -3.48e-03 3.20e-01

hydrodynamics -3.142e+02 -1.12e-01 -2.79e-04 -3.42e-01

chemistry 4.22e-01 3.46e-03 3.33e-01

23 ch2o+oh=hco+h2o 2.126e-05 0. 4.50e-01 0.

11 hco=h+co 8.868e-06 1.92e-01 -1.88e-01 0.

5 hco+oh=co+h2o 5.542e-06 1.20e-01 -1.17e-01 0.

37 hco+o2=co+ho2 3.996e-06 8.64e-02 -8.46e-02 0.

6 oh+co=h+co2 3.887e-06 -8.40e-02 0. 3.34e-01

21 o+hco=co+oh 3.402e-06 7.36e-02 -7.20e-02 0.

25 ch2o+o=hco+oh 2.116e-06 0. 4.48e-02 0.

20 hco+h=co+h2 1.395e-06 3.02e-02 -2.95e-02 0.

zone 13 reaction rate ch3 ch4 ho2

(concentration) 3.86e-10 9.33e-09 3.96e-11

total rate 4.88e-05 3.70e-05 8.57e-06

net rate -5.21e-07 -1.65e-05 -6.48e-08

di�usion -9.53e-03 2.69e-01 -3.38e-03

hydrodynamics -3.142e+02 -2.48e-03 -7.92e-02 -1.45e-03

chemistry 1.33e-03 -6.35e-01 -2.73e-03

27 ch3+o=ch2o+h 2.125e-05 -4.35e-01 0. 0.

3 ch4+oh=ch3+h2o 1.208e-05 2.48e-01 -3.26e-01 0.

4 ch4+o=ch3+oh 7.619e-06 1.56e-01 -2.06e-01 0.

2 ch4+h=ch3+h2 4.090e-06 8.38e-02 -1.11e-01 0.

37 hco+o2=co+ho2 3.996e-06 0. 0. 4.66e-01

26 ch3+oh=ch2o+h2 2.057e-06 -4.21e-02 0. 0.

40 oh+ho2=h2o+o2 1.902e-06 0. 0. -2.22e-01

33 ho2+o=o2+oh 1.167e-06 0. 0. -1.36e-01

38 h+ho2=oh+oh 8.928e-07 0. 0. -1.04e-01

39 h+ho2=h2+o2 1.335e-07 0. 0. -1.56e-02

Table A.12: Lagrange edit of rates a�ecting physical variables in zone 13 for

methane test problem at cycle 1500: continued.
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zone 13 reaction rate h2o2 ch2o ch3o

(concentration) 5.51e-12 2.32e-10 1.73e-12

total rate 1.70e-07 4.73e-05 9.05e-07

net rate -1.74e-08 -3.47e-07 -8.65e-10

di�usion 2.01e-01 -2.99e-03 -8.41e-03

hydrodynamics -3.142e+02 -1.02e-02 -1.54e-03 -5.99e-04

chemistry -2.93e-01 -2.81e-03 8.06e-03

23 ch2o+oh=hco+h2o 2.126e-05 0. -4.49e-01 0.

27 ch3+o=ch2o+h 2.125e-05 0. 4.49e-01 0.

25 ch2o+o=hco+oh 2.116e-06 0. -4.47e-02 0.

26 ch3+oh=ch2o+h2 2.057e-06 0. 4.35e-02 0.

28 ch3+o2=ch3o+o 4.521e-07 0. 0. 5.00e-01

-28 ch3o+o=ch3+o2 3.308e-07 0. 0. -3.65e-01

42 h2o2=oh+oh 9.004e-08 -5.30e-01 0. 0.

35 ch3o+o2=ch2o+ho2 7.597e-08 0. 1.61e-03 -8.39e-02

31 ch3o=ch2o+h 3.805e-08 0. 8.04e-04 -4.20e-02

44 ch4+ho2=ch3+h2o2 2.093e-08 1.23e-01 0. 0.

-41 ho2+ho2=h2o2+o2 1.132e-08 6.66e-02 0. 0.

45 ch2o+ho2=hco+h2o2 5.885e-09 3.46e-02 -1.24e-04 0.

-42 oh+oh=h2o2 3.884e-09 2.28e-02 0. 0.

zone 13 reaction rate temp

(concentration) 1544.17

total rate 2.43e+06

net rate 4.63e+05

conduction -1.97e-01

di�usion -5.06e-03

hydrodynamics -3.142e+02 -5.27e-02

chemistry 4.46e-01

7 h+o2=o+oh 4.877e-05 -1.05e-01

23 ch2o+oh=hco+h2o 2.126e-05 8.45e-02

27 ch3+o=ch2o+h 2.125e-05 1.97e-01

-7 o+oh=h+o2 1.524e-05 3.27e-02

3 ch4+oh=ch3+h2o 1.208e-05 2.36e-02

11 hco=h+co 8.868e-06 -1.71e-02

-9 oh+oh=o+h2o 8.583e-06 1.98e-02

9 o+h2o=oh+oh 7.893e-06 -1.82e-02

-10 oh+h2=h+h2o 6.314e-06 1.28e-02

5 hco+oh=co+h2o 5.542e-06 7.77e-02

37 hco+o2=co+ho2 3.996e-06 1.72e-02

6 oh+co=h+co2 3.887e-06 1.15e-02

21 o+hco=co+oh 3.402e-06 3.99e-02

26 ch3+oh=ch2o+h2 2.057e-06 1.97e-02

40 oh+ho2=h2o+o2 1.902e-06 1.85e-02

20 hco+h=co+h2 1.395e-06 1.67e-02

Table A.12: Lagrange edit of rates a�ecting physical variables in zone 13 for

methane test problem at cycle 1500: continued.
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lagrange relative change per cycle

zone h h2 o o2 oh h2o co

1 -3.43e-04 -2.26e-04 -2.45e-04 2.31e-05 -1.38e-04 3.73e-05 -2.62e-04

2 -1.99e-04 -1.28e-04 -1.34e-04 2.50e-06 -6.33e-05 8.69e-06 -1.54e-04

3 -3.10e-04 -1.90e-04 -1.87e-04 -2.27e-05 -5.45e-05 -2.01e-05 -2.46e-04

4 -1.07e-03 -6.72e-04 -6.69e-04 -4.59e-05 -2.42e-04 -3.48e-05 -8.44e-04

5 -2.46e-03 -1.55e-03 -1.56e-03 -7.82e-05 -5.95e-04 -4.78e-05 -2.03e-03

6 -4.06e-03 -2.53e-03 -2.55e-03 -1.39e-04 -9.38e-04 -8.26e-05 -3.99e-03

7 -5.17e-03 -3.14e-03 -3.17e-03 -2.52e-04 -1.01e-03 -1.69e-04 -7.25e-03

8 -4.52e-03 -2.57e-03 -2.57e-03 -4.44e-04 -4.17e-04 -3.46e-04 -1.17e-02

9 -9.48e-05 2.95e-04 6.04e-04 -7.41e-04 1.47e-03 -6.43e-04 -1.57e-02

10 9.89e-03 3.68e-03 8.21e-03 -1.32e-03 5.85e-03 -9.25e-04 -1.72e-02

11 2.12e-02 -6.75e-03 2.13e-02 -3.31e-03 1.54e-02 -5.18e-04 -1.42e-02

12 2.54e-02 -2.60e-02 3.97e-02 -7.92e-03 3.33e-02 1.46e-03 -6.72e-03

13 3.16e-02 -2.16e-02 6.03e-02 -1.24e-02 5.50e-02 4.26e-03 1.17e-03

14 4.29e-02 -4.55e-03 7.27e-02 -1.35e-02 6.83e-02 6.18e-03 5.57e-03

15 5.20e-02 4.57e-03 7.18e-02 -1.18e-02 6.92e-02 7.02e-03 6.97e-03

16 6.32e-02 7.09e-03 6.09e-02 -9.40e-03 6.16e-02 7.38e-03 7.36e-03

17 7.32e-02 7.57e-03 4.17e-02 -6.88e-03 4.61e-02 7.66e-03 7.63e-03

18 3.60e-02 7.82e-03 2.34e-02 -4.34e-03 3.01e-02 7.91e-03 7.87e-03

19 1.03e-02 8.17e-03 5.15e-03 -1.82e-03 1.91e-02 8.30e-03 8.25e-03

20 -4.34e-03 8.62e-03 -6.40e-03 -3.78e-04 -2.44e-03 8.88e-03 8.81e-03

21 -1.43e-03 7.26e-03 -2.99e-03 -5.36e-05 -3.98e-03 9.86e-03 9.46e-03

22 -1.79e-03 1.97e-03 -2.15e-03 -6.10e-06 -2.94e-03 7.73e-03 5.54e-03

23 -1.94e-03 2.73e-04 -1.98e-03 -2.37e-07 -2.72e-03 1.60e-03 9.28e-04

24 -1.95e-03 4.40e-05 -1.95e-03 1.89e-07 -2.68e-03 2.28e-04 1.69e-04

25 -1.95e-03 1.27e-05 -1.94e-03 -3.71e-07 -2.67e-03 7.35e-05 7.88e-05

zone hco co2 ch3 ch4 ho2 h2o2 ch2o

1 -5.27e-04 3.60e-05 -8.67e-04 -2.50e-03 -1.14e-04 -8.95e-05 -4.69e-04

2 -2.29e-04 9.50e-06 -4.09e-03 -2.81e-02 -5.63e-05 -1.23e-04 -1.63e-04

3 -1.80e-04 -1.61e-05 -2.96e-02 -3.00e-02 -5.77e-05 -3.77e-04 7.81e-06

4 -9.69e-04 -2.67e-05 -3.15e-02 -3.17e-02 -2.56e-04 -1.09e-03 -6.31e-04

5 -2.85e-03 -2.57e-05 -3.42e-02 -3.44e-02 -7.18e-04 -2.33e-03 -8.91e-03

6 -7.94e-03 2.28e-06 -3.84e-02 -3.87e-02 -1.38e-03 -3.96e-03 -3.70e-02

7 -2.85e-02 1.62e-04 -4.47e-02 -4.51e-02 -1.91e-03 -5.63e-03 -4.57e-02

8 -5.26e-02 7.71e-04 -5.33e-02 -5.37e-02 -1.74e-03 -6.51e-03 -5.43e-02

9 -6.41e-02 2.43e-03 -6.40e-02 -6.45e-02 -7.74e-04 -5.03e-03 -6.46e-02

10 -7.35e-02 5.63e-03 -7.51e-02 -7.56e-02 -8.87e-03 -8.92e-04 -7.45e-02

11 -7.32e-02 9.32e-03 -7.95e-02 -8.06e-02 -4.52e-02 -2.54e-02 -7.77e-02

12 -5.23e-02 1.06e-02 -6.76e-02 -7.20e-02 -6.82e-02 -9.20e-02 -6.83e-02

13 -1.09e-02 9.22e-03 -4.15e-02 -5.37e-02 -4.99e-02 -9.26e-02 -4.59e-02

14 3.24e-02 7.75e-03 -1.44e-02 -3.58e-02 -1.40e-02 -3.98e-02 -1.84e-02

15 5.47e-02 7.35e-03 2.90e-03 -2.29e-02 9.17e-03 -6.54e-03 -1.11e-04

16 5.32e-02 7.46e-03 8.56e-03 -1.47e-02 1.39e-02 3.42e-03 6.03e-03

17 3.76e-02 7.71e-03 8.26e-03 -9.18e-03 1.25e-02 6.23e-03 7.32e-03

18 2.10e-02 7.97e-03 7.96e-03 -5.17e-03 9.52e-03 6.54e-03 7.66e-03

19 3.37e-03 8.38e-03 8.10e-03 -2.01e-03 6.27e-03 5.76e-03 7.94e-03

20 -7.41e-03 9.00e-03 7.81e-03 -4.04e-04 1.64e-03 2.68e-03 7.57e-03

21 -3.63e-03 9.78e-03 3.67e-03 -5.66e-05 -1.03e-04 6.08e-04 3.47e-03

22 -2.63e-03 6.08e-03 5.35e-04 -6.47e-06 -2.98e-04 2.36e-04 6.05e-04

23 -2.42e-03 1.00e-03 2.20e-05 -2.86e-07 -3.12e-04 1.89e-04 1.39e-04

24 -2.38e-03 1.43e-04 -4.76e-05 1.82e-07 -3.14e-04 1.82e-04 7.51e-05

25 -2.37e-03 4.03e-05 -5.75e-05 -3.72e-07 -3.14e-04 1.80e-04 6.61e-05

Table A.13: Edit of the relative changes in the physical variables during the

Lagrange part of cycle 1500 of the methane test problem.
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lagrange relative change per cycle

zone ch3o t dx u

1 -7.14e-04 -1.75e-05 -2.12e-05 -4.46e-01

2 -3.58e-03 -3.86e-07 -1.99e-06 -9.49e-03

3 -2.92e-02 2.45e-05 2.32e-05 -1.60e-02

4 -3.09e-02 5.42e-05 4.88e-05 -8.41e-02

5 -3.29e-02 1.00e-04 8.56e-05 7.45e-03

6 -3.66e-02 1.80e-04 1.50e-04 2.07e-03

7 -4.24e-02 3.05e-04 2.53e-04 -6.78e-04

8 -5.10e-02 4.70e-04 3.88e-04 -2.53e-03

9 -6.26e-02 6.49e-04 5.36e-04 -3.48e-03

10 -7.62e-02 9.41e-04 8.20e-04 -4.46e-03

11 -8.31e-02 2.25e-03 2.19e-03 -9.68e-03

12 -6.39e-02 5.72e-03 5.87e-03 -2.10e-02

13 -1.58e-02 9.58e-03 1.00e-02 -2.51e-02

14 3.57e-02 1.10e-02 1.15e-02 -1.95e-02

15 5.98e-02 1.02e-02 1.05e-02 -1.17e-02

16 5.36e-02 8.44e-03 8.66e-03 -5.65e-03

17 3.00e-02 6.41e-03 6.51e-03 -1.61e-03

18 -4.73e-03 4.19e-03 4.20e-03 1.12e-03

19 -1.29e-02 1.79e-03 1.78e-03 2.76e-03

20 -5.12e-03 3.66e-04 3.70e-04 2.90e-03

21 -3.19e-03 5.38e-05 5.24e-05 2.69e-03

22 -2.80e-03 7.64e-06 6.01e-06 2.78e-03

23 -2.74e-03 1.43e-06 2.32e-07 2.93e-03

24 -2.72e-03 3.31e-07 -1.90e-07 3.07e-03

25 -2.72e-03 -4.43e-08 3.72e-07 3.18e-03

Table A.13: Edit of the relative changes in the physical variables during the

Lagrange part of cycle 1500 of the methane test problem: continued.
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remap relative change per cycle

zone h h2 o o2 oh h2o co

1 -8.17e-05 -5.46e-05 -5.94e-05 6.46e-06 -3.49e-05 9.94e-06 -6.25e-05

2 -2.70e-04 -1.82e-04 -1.99e-04 2.31e-05 -1.21e-04 3.49e-05 -2.06e-04

3 -2.71e-04 -1.88e-04 -2.13e-04 3.68e-05 -1.48e-04 5.30e-05 -2.04e-04

4 2.27e-04 1.31e-04 1.09e-04 4.15e-05 -9.17e-06 5.18e-05 1.90e-04

5 1.21e-03 7.60e-04 7.48e-04 5.20e-05 2.62e-04 4.85e-05 1.03e-03

6 2.47e-03 1.54e-03 1.54e-03 8.95e-05 5.52e-04 6.60e-05 2.50e-03

7 3.53e-03 2.14e-03 2.15e-03 1.75e-04 6.74e-04 1.29e-04 5.07e-03

8 3.32e-03 1.88e-03 1.87e-03 3.33e-04 2.82e-04 2.72e-04 8.84e-03

9 -5.35e-05 -2.80e-04 -5.89e-04 5.93e-04 -1.23e-03 5.27e-04 1.26e-02

10 -8.41e-03 -2.83e-03 -7.08e-03 1.13e-03 -5.04e-03 7.84e-04 1.45e-02

11 -1.83e-02 6.55e-03 -1.88e-02 2.97e-03 -1.37e-02 4.37e-04 1.24e-02

12 -2.29e-02 2.28e-02 -3.55e-02 7.16e-03 -2.99e-02 -1.33e-03 6.06e-03

13 -2.90e-02 1.94e-02 -5.40e-02 1.12e-02 -4.93e-02 -3.84e-03 -9.95e-04

14 -3.84e-02 4.30e-03 -6.41e-02 1.21e-02 -6.04e-02 -5.54e-03 -4.97e-03

15 -4.54e-02 -3.90e-03 -6.10e-02 1.03e-02 -5.90e-02 -6.12e-03 -6.08e-03

16 -4.76e-02 -5.77e-03 -4.70e-02 7.69e-03 -4.75e-02 -6.03e-03 -6.02e-03

17 -3.49e-02 -5.32e-03 -2.77e-02 4.82e-03 -2.98e-02 -5.37e-03 -5.35e-03

18 -1.41e-02 -3.48e-03 -1.07e-02 2.03e-03 -1.25e-02 -3.51e-03 -3.50e-03

19 -2.46e-03 -2.02e-04 -2.14e-03 2.71e-04 -1.54e-03 -1.99e-04 -1.98e-04

20 -1.68e-04 3.58e-03 -1.11e-03 -1.45e-04 5.51e-04 3.85e-03 3.81e-03

21 1.01e-04 5.54e-03 -1.11e-03 -8.08e-05 -7.87e-04 7.53e-03 7.13e-03

22 3.45e-04 4.10e-03 -4.59e-04 -2.51e-05 -5.19e-04 8.52e-03 7.14e-03

23 1.40e-04 1.66e-03 -1.51e-04 -7.07e-06 -1.90e-04 5.66e-03 4.05e-03

24 4.17e-05 5.35e-04 -4.69e-05 -2.10e-06 -6.28e-05 2.32e-03 1.50e-03

25 1.28e-05 1.35e-04 -9.31e-06 -5.65e-07 -1.45e-05 6.39e-04 4.00e-04

zone hco co2 ch3 ch4 ho2 h2o2 ch2o

1 -1.33e-04 9.45e-06 -1.85e-04 7.26e-04 -2.86e-05 -1.44e-05 -1.24e-04

2 -4.56e-04 3.30e-05 1.47e-03 2.47e-03 -9.90e-05 -3.08e-05 -4.33e-04

3 -5.56e-04 5.00e-05 4.60e-03 4.69e-03 -1.19e-04 7.50e-05 -5.81e-04

4 2.17e-05 4.82e-05 7.52e-03 7.52e-03 2.04e-05 4.77e-04 6.44e-05

5 1.41e-03 3.76e-05 1.14e-02 1.14e-02 3.48e-04 1.27e-03 6.44e-03

6 5.87e-03 1.14e-05 1.68e-02 1.68e-02 8.33e-04 2.48e-03 1.60e-02

7 1.84e-02 -1.12e-04 2.42e-02 2.42e-02 1.29e-03 3.90e-03 2.43e-02

8 3.34e-02 -5.98e-04 3.40e-02 3.41e-02 1.27e-03 4.88e-03 3.42e-02

9 4.64e-02 -1.99e-03 4.64e-02 4.66e-02 7.19e-04 3.96e-03 4.66e-02

10 5.90e-02 -4.78e-03 6.01e-02 6.04e-02 8.83e-03 8.36e-04 5.97e-02

11 6.31e-02 -8.14e-03 6.83e-02 6.91e-02 3.95e-02 2.53e-02 6.69e-02

12 4.68e-02 -9.52e-03 6.04e-02 6.44e-02 6.02e-02 7.80e-02 6.11e-02

13 9.73e-03 -8.36e-03 3.77e-02 4.88e-02 4.50e-02 8.10e-02 4.16e-02

14 -2.88e-02 -6.98e-03 1.32e-02 3.23e-02 1.29e-02 3.68e-02 1.68e-02

15 -4.69e-02 -6.41e-03 -2.32e-03 2.01e-02 -7.62e-03 6.08e-03 3.35e-04

16 -4.17e-02 -6.09e-03 -6.80e-03 1.20e-02 -1.15e-02 -2.71e-03 -4.87e-03

17 -2.54e-02 -5.39e-03 -5.84e-03 6.46e-03 -8.88e-03 -4.34e-03 -5.15e-03

18 -9.74e-03 -3.52e-03 -3.56e-03 2.45e-03 -4.46e-03 -2.92e-03 -3.42e-03

19 -2.05e-03 -2.00e-04 -2.39e-04 3.08e-04 -6.29e-04 -4.05e-04 -2.33e-04

20 -1.30e-03 3.84e-03 2.91e-03 -1.55e-04 7.04e-04 8.92e-04 2.82e-03

21 -1.28e-03 7.27e-03 3.41e-03 -8.57e-05 3.92e-04 6.29e-04 3.25e-03

22 -5.61e-04 7.44e-03 1.76e-03 -2.64e-05 1.02e-04 2.08e-04 1.66e-03

23 -1.99e-04 4.32e-03 5.62e-04 -7.42e-06 2.27e-05 5.65e-05 5.33e-04

24 -6.86e-05 1.60e-03 1.64e-04 -2.19e-06 5.29e-06 1.53e-05 1.58e-04

25 -2.12e-05 4.23e-04 3.98e-05 -5.86e-07 1.33e-06 3.74e-06 3.89e-05

Table A.14: Edit of the relative changes in the physical variables due to the

remap onto the moving grid of the methane test problem at cycle 1500.
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remap relative change per cycle

zone ch3o t dx u

1 -1.58e-04 -5.21e-06 7.66e-04 1.00e+00

2 1.49e-03 -1.95e-05 7.58e-04 1.02e-03

3 4.59e-03 -3.38e-05 7.78e-04 -1.52e-05

4 7.51e-03 -4.43e-05 8.23e-04 -2.19e-02

5 1.14e-02 -6.55e-05 8.75e-04 6.58e-03

6 1.67e-02 -1.17e-04 9.12e-04 5.50e-03

7 2.39e-02 -2.14e-04 9.13e-04 5.75e-03

8 3.35e-02 -3.55e-04 8.78e-04 6.23e-03

9 4.60e-02 -5.21e-04 8.28e-04 6.68e-03

10 6.10e-02 -8.08e-04 6.42e-04 7.63e-03

11 7.09e-02 -2.02e-03 -6.54e-04 1.23e-02

12 5.69e-02 -5.17e-03 -4.42e-03 2.13e-02

13 1.43e-02 -8.67e-03 -9.08e-03 2.39e-02

14 -3.15e-02 -9.91e-03 -1.14e-02 1.80e-02

15 -5.08e-02 -8.91e-03 -1.11e-02 1.01e-02

16 -4.22e-02 -6.91e-03 -9.85e-03 3.94e-03

17 -2.01e-02 -4.50e-03 -8.30e-03 -3.12e-04

18 -2.24e-03 -1.99e-03 -6.49e-03 -3.09e-03

19 1.07e-03 -2.78e-04 -3.77e-03 -3.63e-03

20 -8.18e-04 1.42e-04 -2.89e-03 -3.23e-03

21 -5.25e-04 7.89e-05 -2.73e-03 -2.93e-03

22 -2.02e-04 2.48e-05 -2.79e-03 -2.82e-03

23 -7.15e-05 7.11e-06 -2.87e-03 -2.85e-03

24 -2.68e-05 2.19e-06 -2.92e-03 -2.90e-03

25 -1.25e-05 6.24e-07 -2.93e-03 -2.92e-03

Table A.14: Edit of the relative changes in the physical variables due to

the remap onto the moving grid of the methane test problem at cycle 1500:

continued.
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remap relative change per cycle

zone h h2 o o2 oh h2o co

1 1.12e-03 7.46e-04 8.11e-04 -8.80e-05 4.77e-04 -1.36e-04 8.54e-04

2 3.53e-03 2.38e-03 2.60e-03 -3.01e-04 1.58e-03 -4.56e-04 2.70e-03

3 3.51e-03 2.43e-03 2.73e-03 -4.52e-04 1.86e-03 -6.52e-04 2.64e-03

4 -1.78e-03 -9.84e-04 -7.40e-04 -4.50e-04 3.00e-04 -5.72e-04 -1.53e-03

5 -1.00e-02 -6.26e-03 -6.14e-03 4.59e-04 -2.11e-03 -4.42e-04 -8.46e-03

6 -1.70e-02 -1.06e-02 -1.06e-02 -6.10e-04 -3.83e-03 -4.57e-04 -1.67e-02

7 -1.94e-02 -1.18e-02 -1.19e-02 -9.01e-04 -3.84e-03 -6.56e-04 -2.61e-02

8 -1.46e-02 -8.43e-03 -8.41e-03 -1.25e-03 -1.67e-03 -1.00e-03 -3.39e-02

9 -2.63e-03 -9.24e-04 -3.21e-04 -1.53e-03 2.35e-03 -1.34e-03 -3.44e-02

10 1.08e-02 4.31e-03 9.19e-03 -1.72e-03 6.92e-03 -1.31e-03 -2.55e-02

11 1.41e-02 -9.59e-04 1.32e-02 -1.95e-03 9.33e-03 -6.00e-04 -1.22e-02

12 5.29e-03 -3.27e-03 5.68e-03 -9.02e-04 4.16e-03 -6.05e-05 -2.61e-03

13 -6.84e-03 2.80e-03 -1.26e-02 2.60e-03 -1.17e-02 -9.92e-04 -6.76e-04

14 -2.07e-02 1.52e-03 -3.39e-02 6.34e-03 -3.20e-02 -2.98e-03 -2.74e-03

15 -4.13e-02 -3.90e-03 -5.41e-02 9.06e-03 -5.24e-02 -5.53e-03 -5.50e-03

16 -7.59e-02 -9.29e-03 -7.10e-02 1.17e-02 -7.24e-02 -9.59e-03 -9.57e-03

17 -1.03e-01 -1.75e-02 -8.07e-02 1.44e-02 -8.81e-02 -1.77e-02 -1.76e-02

18 -1.02e-01 -3.31e-02 -7.63e-02 1.47e-02 -9.65e-02 -3.33e-02 -3.32e-02

19 -3.97e-02 -5.29e-02 -1.60e-02 9.66e-03 -8.22e-02 -5.36e-02 -5.34e-02

20 2.69e-03 -6.25e-02 2.11e-02 3.55e-03 -2.49e-02 -6.60e-02 -6.55e-02

21 -8.90e-05 -4.78e-02 1.06e-02 7.93e-04 6.87e-03 -6.21e-02 -5.93e-02

22 -1.74e-03 -2.07e-02 2.42e-03 1.34e-04 2.70e-03 -4.00e-02 -3.44e-02

23 -3.83e-04 -4.45e-03 4.07e-04 1.95e-05 5.08e-04 -1.45e-02 -1.06e-02

24 -3.52e-05 -4.88e-04 4.62e-05 1.91e-06 5.91e-05 -2.04e-03 -1.34e-03

25 1.33e-06 1.43e-05 -1.02e-06 -8.16e-08 -1.57e-06 6.77e-05 4.24e-05

zone hco co2 ch3 ch4 ho2 h2o2 ch2o

1 1.82e-03 -1.29e-04 2.54e-03 -9.77e-03 3.90e-04 1.97e-04 1.69e-03

2 5.97e-03 -4.31e-04 -1.76e-02 -3.21e-02 1.29e-03 4.14e-04 5.67e-03

3 7.02e-03 -6.15e-04 -5.50e-02 -5.64e-02 1.50e-03 -7.75e-04 7.25e-03

4 6.36e-04 -5.34e-04 -7.92e-02 -7.92e-02 -1.79e-05 -4.68e-03 4.30e-04

5 -1.12e-02 -3.55e-04 -1.00e-01 -1.01e-01 -2.80e-03 -1.07e-02 -4.62e-02

6 -3.64e-02 -1.20e-04 -1.18e-01 -1.18e-01 -5.65e-03 -1.70e-02 -1.11e-01

7 -8.88e-02 4.72e-04 -1.30e-01 -1.31e-01 -7.05e-03 -2.10e-02 -1.31e-01

8 -1.31e-01 1.99e-03 -1.34e-01 -1.34e-01 -5.57e-03 -1.99e-02 -1.35e-01

9 -1.25e-01 4.65e-03 -1.25e-01 -1.26e-01 -2.42e-03 -1.25e-02 -1.26e-01

10 -9.97e-02 7.12e-03 -1.01e-01 -1.01e-01 -9.33e-03 -2.96e-03 -1.01e-01

11 -5.66e-02 6.47e-03 -5.97e-02 -6.02e-02 -2.41e-02 -9.83e-03 -5.87e-02

12 -1.49e-02 2.28e-03 -1.65e-02 -1.67e-02 -1.35e-02 -9.72e-03 -1.60e-02

13 -1.36e-03 -1.61e-03 5.91e-03 8.93e-03 7.20e-03 1.43e-02 6.88e-03

14 -1.70e-02 -3.63e-03 5.69e-03 1.62e-02 4.90e-03 1.65e-02 7.44e-03

15 -4.26e-02 -5.74e-03 -3.08e-03 1.71e-02 -7.83e-03 3.98e-03 -6.70e-04

16 -6.36e-02 -9.67e-03 -1.09e-02 1.77e-02 -1.82e-02 -5.24e-03 -8.16e-03

17 -7.40e-02 -1.77e-02 -1.88e-02 1.87e-02 -2.75e-02 -1.47e-02 -1.71e-02

18 -6.95e-02 -3.35e-02 -3.34e-02 1.73e-02 -3.66e-02 -2.67e-02 -3.24e-02

19 -9.85e-03 -5.38e-02 -5.15e-02 1.07e-02 -3.39e-02 -3.16e-02 -5.05e-02

20 2.51e-02 -6.61e-02 -5.34e-02 3.82e-03 -1.68e-02 -1.98e-02 -5.19e-02

21 1.22e-02 -6.03e-02 -3.10e-02 8.41e-04 -3.89e-03 -6.10e-03 -2.96e-02

22 2.93e-03 -3.56e-02 -9.22e-03 1.41e-04 -5.54e-04 -1.11e-03 -8.68e-03

23 5.38e-04 -1.13e-02 -1.53e-03 2.04e-05 -6.40e-05 -1.56e-04 -1.45e-03

24 5.78e-05 -1.44e-03 -1.52e-04 2.00e-06 -4.81e-06 -1.42e-05 -1.46e-04

25 -2.27e-06 4.49e-05 4.21e-06 -8.38e-08 1.20e-07 3.76e-07 4.11e-06

Table A.15: Edit of the relative changes in the physical variables due to the

remap onto the cycle 1500 grid of the methane test problem at cycle 1501.
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zone ch3o t dx u

1 2.17e-03 7.10e-05 -1.07e-02 1.00e+00

2 -1.78e-02 2.54e-04 -9.35e-03 -1.38e-02

3 -5.49e-02 4.12e-04 -6.83e-03 1.78e-04

4 -7.91e-02 4.73e-04 -3.24e-03 1.44e-01

5 -1.00e-01 5.70e-04 1.34e-03 -6.12e-02

6 -1.17e-01 8.00e-04 6.57e-03 -3.39e-02

7 -1.29e-01 1.12e-03 1.20e-02 -2.16e-02

8 -1.32e-01 1.37e-03 1.73e-02 -1.11e-02

9 -1.24e-01 1.40e-03 2.23e-02 -6.20e-04

10 -1.02e-01 1.28e-03 2.68e-02 8.90e-03

11 -6.16e-02 1.32e-03 2.99e-02 1.46e-02

12 -1.75e-02 6.15e-04 2.78e-02 1.89e-02

13 -1.07e-03 -2.02e-03 1.76e-02 2.34e-02

14 -1.88e-02 -5.19e-03 9.51e-03 2.33e-02

15 -4.59e-02 -7.80e-03 9.24e-03 2.37e-02

16 -6.35e-02 -1.05e-02 1.12e-02 2.68e-02

17 -5.06e-02 -1.34e-02 1.39e-02 3.12e-02

18 1.85e-02 -1.42e-02 1.42e-02 3.27e-02

19 4.43e-02 -9.61e-03 1.04e-02 2.59e-02

20 1.94e-02 -3.50e-03 5.08e-03 1.43e-02

21 5.08e-03 -7.74e-04 -2.81e-04 4.26e-03

22 1.05e-03 -1.32e-04 -5.21e-03 -2.54e-03

23 1.97e-04 -1.94e-05 -9.12e-03 -7.25e-03

24 1.71e-05 -1.92e-06 -1.17e-02 -1.05e-02

25 -1.34e-06 6.65e-08 -1.24e-02 -1.21e-02

Table A.15: Edit of the relative changes in the physical variables due to the

remap onto the cycle 1500 grid of the methane test problem at cycle 1501:

continued.



Appendix B

Sample NAMELIST Input for Various Types of Problems

B.1 CH4-72

mboxid(1)=8hbox t55

mboxid(2)=16h72 ch4

lists=1:6 8 12:20 24:26 29 30 33 34 100 23

lists(26)=22

lists(27)=113 160

lists(29)=141 273 274

lists(32)=168 169 174 175 180

listr(1)=1552 2 172 4 62 6 7 708 9:12 75 73

listr(15)= 365 56 274 82 67 605 69 70 705

listr(24)=61 25:40 150 42:54 13 14 15

listr(58)=104:106 363 364 109 93 94 90 91 95 92 96:103

listr(78)=57:60 78:80

listr(85)=277 74 152 145

listr(89)=483 207 428 429 208 489 491:496

listr(101)=610 665 482 694 695 699:702

listr(110)=151 719 721 148 1161 66

listr(116)=573 1111:1129 1129 410

listr(138)=615 616 653 654 666 641 643 1049 1050

listr(147)=1692 1693 1663 1664 1015 718 1595

listr(154)=659 1377 660 1374 1375

nzones=1

xmax=1.0e-4

iprint=6(20)

iprint(2)=0

iprint(3)=2

iprint(1)=10

iprint(5)=10

lste4=1

dzero=1.92e-6

dczero=1.75e-6

qk=.2

fnertia=1.e-8

eta2=.2

delymn=20.

euler=1.

euler2=-1.

rzflag=0.

116
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itermx=20

rdelcmx=.1

dt=1.0e-11

dtmin=1.e-20

maxdump=300

frc(22)=1.6e13

rrc(22)=1.0e10

frc(37)=4.8e13

rrc(37)=3.04e14

frc(65)=4.0e12

frx(65)=2.8e4

rrc(65)=1.0e11

rrx(65)=6.365e4

edit4mn=1.0e-4

frc(85)=1.0e12

rrc(85)=1.0e12

frc(86)=2.0e12

rrc(86)=6.0e11

frc(88)=2.0e11

rrc(88)=0.001

frc(62)=4.8e12

rrc(62)=1.2e12

rrx(62)=1.4e4

frcmul(46)=1.2

rrcmul(46)=1.2

frcmul(22)=2.0

rrcmul(22)=2.0

listre=25 26 57 51

eff(6)=20.0

eff(37)=1.0 3.3 1.0 1.0 1.0 21.0 1.0 2.0 1.0 5.0

eff(73)=2.0 3.0 1.0 1.0 1.0 6.0

eff(109)=3(1.0) 0.78 1.0 7.0 7(1.0) 7.7

frc(87)=1.0e-20

rrc(87)=1.0e-20

frc(44)=7.6e10

frx(44)=2.7e3

* use pressure dependent reactions:

listrf(1)=1 15 24 60

arc(1)=6.3e-3

arx(1)=18.0e3

listr(15)=1550

arc(2)=3.47e-12

arp(2)=2.76

arx(2)=2120.0
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listr(24)=1551

arc(3)=7.66e-7

arx(3)=3032.0

listr(60)=1553

arc(4)=3.72e-9

arp(4)=1.12

* warnatz's ho2+ho2:

listr(50)=1555

* use Baldwin's ho2+ho2 (jcs trans 2, 82, 1445 (1986)):

rrc(50)=3.02e12

rrx(50)=1.39e3

* correct r+o2=ro2 rates:

frc(138)=4.39e18

frp(138)=-1.0

frx(138)=3.702e4

* use new ch4+ho2:

listr(53)=1704

* use new c2h4+oh:

listr(62)=1656

* correct ch3+ro2h=ch4+ho2 to give better ch4 concentrations in 563K case:

*; rrx(53)=1.28e3

* reduce ch3+rooh to reduce ch4 and increase ch3o2 reactions:

rrcmul(53)=0.2

rrcmul(147)=2(0.2)

* 3-5-87

* use falloff from Tsang for ch3o2=ch3+o2:

frcmul(139)=0.1

rrcmul(139)=0.1

* fix reverse of pc2h4oh and sc2h4oh:

rrc(135)=2(1.0e11)

rrp(135)=2(0.0)

rrx(135)=2(0.0)

* assume all c2h4oh is pc2h4oh (so as to avoid ch3cho production):

rnlhs(1,136)=32hsc2h4oh

irs(136,1)=274

* use miller's rate for ch2+ch3=c2h4+h:

frc(88)=3.0e13

* add c2h6+ch3o2,c2h5o2:

listr(159)=1702 1781

* fix reverse rate:

rrc(159)=2(7.5e11)

rrx(159)=2(1.28e3)

* use walker's rate for c2h6+o2 (4x faster):

frc(101)=4.0e13
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frx(101)=50.9e3

rrx(147)=6.72e3

rrcmul(53)=1.0

rrcmul(147)=1.0

* use baldwins, jones and walker's ch4+ho2:

frc(53)=1.12e13

frx(53)=24.64e3

rrc(53)=7.43e11

rrx(53)=5.50e3

* ch4+ch3o2 by analogy:

frc(147)=1.12e13

frx(147)=24.64e3

rrc(147)=7.43e11

rrx(147)=5.5e3

* tsang's rate for c2h4+ch3

frc(137)=6.62

frp(137)=3.7

frx(137)=9.5e3

rrc(137)=1.44

rrp(137)=4.02

rrx(137)=5.472e3

* Tsang's rate for ch4+ch3o:

frc(108)=1.57e11

frx(108)=8.842e3

* add ch3+o2=ch2o+oh, Saito et al.

listr(161)=143

frc(161)=3.16e11

frx(161)=9.0e3

rrc(161)=3.29e11

rrx(161)=6.251e4

* correct error in cdat:

rrx(5)=1.256e4

* use clark and dove expression for ch4+h and Tsang's reverse rate

* forward rate is the same at 1100 K and Tsang's reverse rate is 35% slower

listr(2)=283

rrc(2)=289.0

rrp(2)=3.12

rrx(2)=8.711e3

* use cohen and westenberg's ch4+oh (about 2x slower at 1100 K)

listr(3)=3586

* use Tsang's rate for ch3o decomposition ( about 21 times faster )

frc(40)=3.888e37

frp(40)=-6.65

frx(40)=33.26e3
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keq(40)=1

* zero ch3+o2=ch2o+oh

frc(161)=0.0

rrc(161)=0.0

*

dtmax=2.0

mxcycle=3000

maxdump=600

timemx=30.0

pr0=1.013e6

c=36(1.0e-15) 1000. 1.0e-4 0.0

c(12)=1.0

c(4)=2.0

c(7)=7.52

endin=1.0

$

$

B.2 SANT89

The following problem runs to cycle 677 time=2.5e-1 dt=1.998e-18 and tem-

perature in zone 1=917.

mboxid='box t55 89 6 atm 898k'

lists=1:6 8 12:20 24:26 29 30 33 34 100 23

lists(26)=22

lists(27)=109 110 114 115

lists(31)=142 143

lists(33)=121 166 145

lists(36)=113 160

lists(38)=27 147 148 146 144 118

lists(44)=151 362 150 167 214 218 141 273 274

lists(53)=153 371

lists(55)=168 169 170 171 215 192 226 373

lists(63)=174:177 216 190 228 374

lists(71)=180:182 217 191 227 375 406

lists(79)=346 347 387:390

lists(85)=149 372

listr(1)=1552 2 172 4 62 6 7 708 9:12 75 73

listr(15)= 365 56 274 82 67 605 69 70 705

listr(24)=61 25:40 150 42:54 13 14 15
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listr(58)=104:106 363 364 109 93 94 90 91 95 92 96:103

listr(78)=57:60 78:80

listr(85)=277 74 152 145

listr(89)=228:232 238:242

listr(99)=284:287 291:296

listr(109)=302:304 368 369 406 407

listr(116)=503 502 415 416 422 414 425 432 433 417

listr(126)=288 289 404 405 300 301 580 581 587:592 583:586 603

listr(145)=483 207 428 429 208 489 491:496

listr(157)=607:609

listr(160)=402 403 246

listr(163)=610 665

listr(165)=395 397 399 393

listr(169)=396 398 400 394

nzones=1

xmax=1.0e-4

iprint=6(20)

iprint(2)=0

iprint(3)=3

lste4=1

dzero=1.92e-6

dczero=1.75e-6

reldc(1)= 5.29 3.74 1.32 0.94 1.28 1.25 1.00 1.00 0.98 0.80

reldc(11)=1.37 1.32 0.92 0.91 0.97 0.95 0.97 1.00 0.98 1.41

reldc(21)=1.47 1.06 1.04 1.02 0.94

reldc(26)=0.95

reldc(27)=0.80 0.82 0.81 0.81

reldc(31)=0.81 0.80

reldc(33)=0.83 0.84 0.71

reldc(36)=0.82 0.83

reldc(38)=0.69 0.70 0.70 0.71

reldc(42)=0.71 0.72

reldc(44)=0.63

qk=.2

fnertia=1.e-8

eta2=.2

delymn=20.

euler=1.

euler2=-1.

rzflag=0.

itermx=20

rdelcmx=.1

dt=1.0e-11

dtmin=1.e-20
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maxdump=600

frc(22)=3.2e13

rrc(22)=2.0e10

frc(37)=4.8e13

rrc(37)=3.04e14

frc(65)=4.0e12

frx(65)=2.8e4

rrc(65)=1.0e11

rrx(65)=6.365e4

edit4mn=5.0e-4

frc(85)=1.0e12

rrc(85)=1.0e12

frc(86)=2.0e12

rrc(86)=6.0e11

listre=25 26 57 51

eff(6)=20.0

eff(94)=1.0 3.3 1.0 1.0 1.0 21.0 1.0 2.0 1.0 5.0

eff(187)=2.0 3.0 1.0 1.0 1.0 6.0

eff(280)=3(1.0) 0.78 1.0 7.0 7(1.0) 7.7

frc(87)=0.0

rrc(87)=0.0

listr(173)=482

rrc(169)=1.0e12

listr(174)=672:678 680:689 694:696 698:702

listr(199)=151

listr(200)=706 707

frc(44)=7.6e10

frx(44)=2.7e3

listr(202)=719:721 148

frc(143)=3.e13

frc(143)=1.e12

frcmul(143)=2.

frcmul(143)=6.

frcmul(143)=30.

* use pressure dependent reactions:

listrf(1)=1 15 24 60

arc(1)=6.3e-3

arx(1)=18.0e3

listr(15)=1550

arc(2)=3.47e-12

arp(2)=2.76

arx(2)=2120.0

listr(24)=1551

arc(3)=7.66e-7
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arx(3)=3032.0

listr(60)=1553

arc(4)=3.72e-9

arp(4)=1.12

* use Baldwin's ho2+ho2 (jcs trans 2, 82, 1445 (1986)):

*(factor of 2 slower than Walker, 1975 and Warnatz, 1984. at 563k)

listr(50)=1649

* use tully's modified rate for c3h8+oh:

listr(105)=1586 1587

listr(206)=1161 66 4376 1571 1572

listr(211)=1588 1590 1581:1585 1591 1589

listr(220)=573 1111:1126 1129:1131

listr(240)=1080 1081 801 803 802 805 804 809

listr(248)=1083 1084 1087 1088 1090 1091 806 810

listr(256)=807 811 1091 1092 1082 808

listr(262)=766:774 776:781 1681 1682 1686:1688

listr(282)=1013 412 1064 1065 1068 1166 1063 1066 1067 1639 1640

listr(293)=1168 1169

listr(295)=611 612 615 616 712 1095 1629 761

listr(303)=653:656 715 1097 1630 763

listr(311)=666 667 787 668 764 1626 765 714 1098 1631

listr(321)=709 794

listr(323)=629 630 625 626 621 622 617 618

listr(331)=799 800 1101 1102 1633 1634 1074 1075

listr(339)=641 643 645 647 1676 1110 1677

listr(346)=642 644 646 648 711 1109 1678 1165

listr(354)=1049:1052 1060 1105 1691

listr(361)=1043:1046 1059 1106 1632 762

listr(367)=1078 1061 1107 1079 1062 1108

listr(373)=1168 1169

listr(375)=1692:1695 1700 1099 1701

listr(382)=1663:1669

listr(389)=1015 1018 1019 1037 1752

listr(394)=718 1595:1597 1455 1753

listr(400)=659 1377 660:662 812 713 1372 1096

listr(409)=1374 1375 1370 1372 1373

listr(414)=386 388 390 389 606 387 391 392

listr(422)=956 410 793 1376

* use new ch4+ho2:

listr(53)=1704

* use new c2h4+oh:

listr(62)=1656

* add isomerization reactions:

lists(87)=404
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listr(426)=1727 1728

listr(428)=1746:1751

listr(434)=1754 1757 1758

listr(437)=431

* 3 march 87

* decrease ch3co=ch3+co by 5.5 to account for falloff (Tsang):

* at 950 K

frcmul(125)=0.18

rrcmul(125)=0.18

* correct ch3+ro2h=ch4+ho2 to give better ch4 concentrations in 563K case

rrx(53)=1.28e3

listr(439)=602

* correct reverse rate of c2h5co2:

rrc(318)=2(1.0e10)

rrx(318)=2(5.0e4)

* reduce ch3+rooh to reduce ch4 and increase ch3o2 reactions:

rrcmul(53)=0.2

rrcmul(375)=9(0.2)

* 3-5-87

* use falloff from Tsang for ch3o2=ch3+o2:

frcmul(298)=0.1

rrcmul(298)=0.1

* 3-5-87

* use baker, baldwin, fuller and walker's, c4h9+o2 rates at 753 K:

* based on allara and shaws decomposition rates for pc4h9 and sc4h9 and

* baker et al.'s yields.

* add ro2+c4h8 reactions:

listr(441)=1761:1765 1768:1773 1776 1779:1782

* use new rate for h2+o:

listr(9)=1783

* add hcco+o2 reaction:

listr(438)=1365

* add c3h6+o2 reaction:

listr(457)=1038

* miller's rate for ch2+ch3=c2h4+h:

frc(88)=3.0e13

rrc(88)=0.0

* use Miller's current hcco rates:

listr(154)=1364

listr(156)=1366

* put in Miller's ch3+oh=ch2+h2o and ch3+oh=ch2oh+h for future use:

listr(459)=4483

frc(459)=0.0

* add to Ea of c4h8+o2 to reduce rate, since it is faster than c4h8+oh:
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frx(453)=3.7e4

frx(454)=4.0e4

* chemistry input file from Run 1725, green, nbutane

* 16 Sept 86

* decrease ch3co=ch3+co to account for falloff (Tsang):(at Wilk's conditions)

frcmul(125)=0.48

rrcmul(125)=0.48

* reduce irreversible reaction of c4h8+oh by addition channel:

frc(138)=2(1.0e11)

frc(166)=1.0e11

frc(170)=1.0e11

* reduce ch3+o2=ch3o2 to agree with Tsang's falloff at Wilk's conditions:

frcmul(298)=0.5

rrcmul(298)=0.5

* add other path for c2h5o and c3h7o decomposition:

listr(460)=788 786

* use Tully's new 1c4h8+oh rate:

* add waddington mechanism for c3h6:

listr(462)=1544:1546

* reduce irreversible addition of oh to propene:

frc(114)=1.0e11

frc(116)=1.0e11

* use Tsangs rate for h2o2 decompostion at Wilk's conditions:

frcmul(51)=0.5

rrcmul(51)=0.5

* reduce ch4 concentrations:

* (used rrcmul=0.05 for propene)

rrcmul(53)=0.08

rrcmul(375)=9(0.08)

* reduce ch4 concentrations:

* (used rrcmul=0.05 for propene)

rrcmul(53)=0.056

rrcmul(375)=9(0.056)

* reduce ch4 concentrations:

* (used rrcmul=0.05 for propene)

rrcmul(53)=0.001

rrcmul(375)=9(0.001)

* use Allara and Shaw's new rate for ch3+c4h10:

* to estimate rate for ch3+c3h8

* (were using allara and edelson's old #'s)

frc(90)=1.99e11 3.98e11

frx(90)=9.6e3 11.4e3

* add some disporportionation reactions:

* involving c4h7 and alkyl radicals
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listr(465)=419:421

* add h2o2+ch3o2 = ho2+ch3o2h

listr(468)=3554 3553

* ro2+r'o2=ro+r'o+o2 x .5:

frcmul(410)=2(0.5)

frcmul(413)=0.5

frcmul(456)=0.5

frcmul(400)=5(2.0)

rrcmul(400)=5(2.0)

* include ro2+ho2=ro+oh+o2 path:

listr(470)=660:662

* speed up c4h9+o2=c4h9o2 both ways at 563k and add positive Ea:

rrc(295)=3(3.4e11)

rrx(295)=3(-2.0e3)

frc(295)=2.53e17

frx(295)=33.2e3

frc(297)=2.53e17

frx(297)=33.2e3

frc(296)=1.49e18

frx(296)=35.02e3

* slagle and gutman's ch3+o2=ch3o2:

listr(298)=4474

* use Tsangs rate at 715k for ch3o decomp:

frc(40)=3.888e37

frp(40)=-6.65

frx(40)=3.326e4

rrc(40)=7.706e32

rrp(40)=-6.65

rrx(40)=9.697e3

* from Baker et al. runs:

* reduce ho2+ch3cho by .71 to agree with Kaiser's (Baldwin's)

* c2h5cho+ho2 and lower rate of ch3cho consumption in Baker's

* runs and in 715k case:

frc(122)=1.20e12

* add reactions added to cdat v. 131:

listr(473)=3551 3552 3555 3556

* replace reactions put in manually with ones in cdat:

listr(440)=3594

listr(458)=3588

* zero reactions thought not to occur:

frc(95)=0.0

rrc(95)=0.0

* (check with Mel Colkett about c2h2+o2)

frc(85)=0.0
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rrc(85)=0.0

frc(133)=0.0

rrc(133)=0.0

* 11/1/88:

* add propyl peroxy isomerization reactions:

lists(88)=950:955

listr(477)=4457:4471

* account for falloff of ch3+o2 at 10atm and 900K

*(use Tsang's results)

frcmul(298)=0.106

rrcmul(298)=0.106

* use tsang's rate for propyl decomposition:

frc(96)=1.26e13

frx(96)=30.4e3

frc(94)=2.19e13

frx(94)=37.16e3

* use Walker's 22nd Combustion Symp. ch2o+ho2:

frc(54)=5.6e12

frx(54)=13.6e3

keq(54)=1

* use gutman's new ch3o+o2(Timonen,Ratajczak,gutman,J.Phys.Chem,in press)

frc(46)=4.2e12

keq(46)=1

* use tsangs hco+m:

frc(12)=5.12e21

frp(12)=-2.14

frx(12)=20.42e3

keq(12)=1

* zero direct reaction, c3h7+o2=c3h6+ho2:

frc(110)=2(0.0)

rrc(110)=2(0.0)

* zero c3h6+ho2=c3h6o+oh direct reaction:

frc(282)=0.0

rrc(282)=0.0

* reduce c3h6+ho2=c3h6ooh:

rrx(483)=3(8.0e3)

* reduce c3h7o2=c3h6ooh to reduce c3h6o and oxidation rate:

frcmul(477)=3(0.2)

* correct c2h4+ro2:

frc(354)=7(1.13e13)

frx(354)=7(30.43e3)

* correct c2h3+o2:

listr(206)=1420

* zero duplicate reactions:
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frc(471)=2(0.0)

rrc(471)=2(0.0)

frc(403)=2(1.0e12)

* use Tsangs new ch3+c3h8 ( about 15% faster, and gives more isopropyl):

frc(90)=1.506 0.903

frp(90)=3.46 3.65

frx(90)=5.48e3 7.135e3

rrc(90)=7.23e-4 2.4e-2

rrp(90)=4.4 4.02

rrx(90)=10.8e3 10.87e3

* use Tsangs ch3+ho2=ch4+o2 (4 times faster). Will increase ch4

* and should reduce oxidation rate:

frc(45)=3.61e12

frx(45)=0.0

rrc(45)=4.0e13

rrx(45)=56.9e3

* use Tsang's ch2o+ch3 (4 times faster). Will increase ch4,

* and should reduce oxidation rate:

frc(38)=5540.

frp(38)=2.81

frx(38)=5.86e3

rrc(38)=7290.

rrp(38)=2.85

rrx(38)=22.51e3

* ch3o2+ch3o2 set old estimate. Use Anastasi et al., Gas Kinetics,

* ch3o2+ch3o2=ch2o+ch3oh+o2 set to old Kaiser estimate. Use Anastasi,

* Couzens, Waddington et al.'s new values. Faraday Trans(?) reprint.

* Also given at Swansea, 1988. Should help increase ch4:

* Swansea, value which agrees well with Kaiser. Should increase ch4:

* should slow rate down too.

frc(409)=2.8e9

frx(409)=-2.18e3

frc(410)=5.7e11

frx(410)=1.84e3

* Reevaluated ch3o2+ho2. Used Kurylo,Dagaut et al. for total rate at 298K

* Used Tsang for Ea. Split two paths equally:

frc(400)=2(1.1e10)

frx(400)=-2600.0

* reduce c3h6o2h=c3h6o+oh (x .2) Incorporate later into Ea which is low

* compared to Baldwin,Dean and Walker.

frcmul(480)=3(0.2)

* increase c3h7o2=c3h6o2h x 3 to increase c3h6 and decrease c2h4:

frcmul(477)=3(1.6)

rrcmul(477)=3(1.6)
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* use Tsang's c3h8+ho2 rates which have curvature

* (changed frc to agree with Walker at 753K)

frc(107)=14750.0 5.52e4

frp(107)=2.6 2.55

frx(107)=13.91e3 16.48e3

rrc(107)=442.0

rrp(107)=2.83

rrx(107)=4.05e3

rrc(108)=2.17e4

rrp(108)=2.21

rrx(108)=2.57e3

* add c2h6+ro2:

listr(492)=1702 1781

* decrease c3h6o2h+o2 to decrease oxidation rate at high pressures:

frcmul(486)=3(0.3)

rrcmul(486)=3(0.3)

* assume 1-c3h6ooh-3 goes to c3h6o as in previous runs

* (change in future runs)

irs(481,2)=149

rnrhs(1,481)='c3h6o+oh'

*

* Litzinger and Santavicca

* propane, high pressure flow reactor

mxcycle=800

dtmax=0.05

* 4/20/88 initial conditions

timemx=0.25

pr0=6.078e6

prbr=6.078e6

teng=909.6 907. 902. 898. 895. 893. 892. 893. 897. 908. 917.

timdat=0. 6.61e-3 19.14e-3 32.73e-3 45.85e-3 58.55e-3

70.95e-3 83.14e-3 95.35e-3 107.42e-3 117.0e-3

wall=1.0e10

c=93(1.0e-15) 909.6 1.0e-4 0.0

c(27)=1.02e-2

c(4)=0.20794

c(7)=0.78186

endin=1.0

$

$



Appendix C

De�nition of NAMELIST Variables

The following is a list of the variables that can be set in the input deck.

See Table A.8 for an example of the input for a typical problem. It is

recommended that one understand Table A.8 before attempting to generate

a problem from scratch. A \0" is the number zero. \df" denotes the default

value used by the code unless another value is speci�ed in the input deck.

We adhere to the FORTRAN convention that variables whose name begins

with I through N are entered as integers. The defaults are given so that one

can see whether a number is entered as an integer or a decimal number.

Descriptions of new variables were provided by Charles Westbrook and

Bill Pitz.

ALAM0 Initial guess at � in Eq. (6.7). df = 1.0. Usually not necessary to

set.

ALPHAD The exponent of the temperature dependence of �T . �T is

allowed the same form as Di in Eq. (2.7). df = 0.5.

ALPHADC The exponent of the temperature dependence ofDi in Eq. (2.7).

df = 0.5.

ARC(MXKF), ARP(MXKF), ARX(MXKF) See LISTRF.

MXKF (maximum number of reactions with fallo� parameters) is 10.

ATWT(I) I = 1,IMX Atomic weight of species I. Is usually read from

disk �le CDAT, but can be modi�ed in input deck.

BETAD The exponent of the dependence of �T on ctot. �
T is allowed the

same form as Di in Eq. (2.7). df = -1.0.

BETADC The exponent of the dependence of Di on ctot in Eq. (2.7). df

= -1.0.

C(I,J) I = 1,IU; J = 1,JMX Allows speci�cation of the physical vari-

ables ci;j, Tj , �rj and vj� 1
2
at generation time. The array is read as

a one-dimensional array with the variables for zone 1 followed by the

variables for zone 2, and so forth. If C(I,J) is speci�ed only for the

130
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�rst zone, the same values will be assigned to all zones. This is the

form used to initialize C(I,J) in Table A.8. If all the variables are to

be speci�ed independently, remember that the dummy boundary zones

must also be speci�ed. This means that there are two more zones than

the number of physical zones.

C0(I) I = 1,IT With C1(I), XDISC, XSPRD (and usually PR0) allows

one to initialize ci;j and Tj with a step-function distribution �(x). Let

(see Eq. (9.3))

�(x) =
1

1 + exp

�
x�XDISC

XSPRD

�

If C0(IT) is nonzero, C(I,J) will be initialized with a spatial depen-

dence given by

C(I; J) = �(xj)C0(I) + [1� �(xj)]C1(I) + �(xj)C2(I):

For a description of �(x), see C2(I). Both species and temperature are

set. The dynamic rezoner will choose �rj so that the step is described

adaquately, so NZXCESS and XSPRD should be nonzero.

C1(I) I = 1,IT See C0.

C2(I) I = 1,IT C2(I), with GAUSX and GAUSDX, allows one to specify

an initial species and temperature distribution characterized by the

function

�(x) =
4

[1 + exp(�y)] [1 + exp(y)]

where

y =
x�GAUSX

GAUSDX

�(x) has a maximum of 1 at GAUSX, and falls exponentially to zero

over a distance characterized by GAUSDX. We use this form rather

than a true Gaussian because it is the derivative of Eq. (9.3). Thus

the inde�nite integral analogous to Eq. (9.4) is easily done. See C0.

C1TVR(MXTVR), C2TVR(MXTVR), C3TVR(MXTVR) See LISTTVR.

MXTVR (maximum number of time-varying rates) is 150.
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CBURNR(MXIU) For problems with prescribed inlet boundary uxes,

this array contains the species concentrations, temperature, and bound-

ary uid velocity. Concentrations are renormalized to the boundary

pressure.

CMPRATIO Compression ratio for free-piston (time-varying piston ve-

locity) option. df = 24.0. See also IFPISTON.

CNEGF Species whose mole fractions are less than CNEGF are allowed

to change RDELCNEG per cycle. df = 1.E-6.

CNEGFR Species whose mole fraction are less than CNEGFR are not

advected from zone during remap. Usually not set. df = 0.0.

CNVG Convergence criteria. Code iterates until relative change per iter-

ation in physical variable is less than CNVG. May be worth trying

di�erent values in very expensive calculations. df = 1.E-6.

CNVGRAT f of Eq. (4.17). df = 0.25.

COMPRESS Compression ratio. See RPM.

CPA1(I) I = 1,IMX Coe�cient of (T=1000)0 in expansion of ciP (see

Eq. (2.15). Units are cal=mole. Usually read from CDAT but can

be modi�ed in input deck. Modi�ed value must be nonzero, since

code takes CDAT value of CPA1 if not changed from zero by input

deck. If real zero is desired, put in very small number. Index I must

refer to index in problem, not index in CDAT.

CPA2(I) I = 1,IMX Coe�cient of (T=1000)1 in ciP . See CPA1.

CPA3(I) I = 1,IMX Coe�cient of (T=1000)2 in ciP . See CPA1.

CPA4(I) I = 1,IMX Coe�cient of (T=1000)3 in ciP . See CPA1.

CPA5(I) I = 1,IMX Coe�cient of (T=1000)4 in ciP . See CPA1.

CPA6(I) I = 1,IMX Coe�cient of (T=1000)5 in ciP . See CPA1.

CPCON If a �xed, constant speci�c heat is wanted, set CPCON equal to

that constant value.
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DADC If the dynamic rezoner is used, each cycle the code will calculate

the value of the � of Eq. (6.2) needed to satisfy Eq. (6.5). DADC is

the fraction of this correction to the current � that is made each cycle.

Not usually modi�ed. df = 0.1.

DCZERO The D0
i of Eq. (2.7) is taken as DCZERO*RELDC(I). Default

gives a number on the order of transport value. df = 1.6E-6.

DELYMN If
R
dx jdT=dxj < DELYMN dynamic rezoner will rezone prob-

lem with constant zoning. Set nonzero if dynamic rezoning desired. df

= 0.0.

DELX(J) J = 1,JMX If dynamic rezoning is to be done, initial guess at

�rj can be set with DELX(J). Usually not set. df = 0.0.

DMUL is a multiplier for temperature conduction terms in DIFFUN and

DIFPED. This variable was introduced when the Sandia transport

package was added. df = 1.

DT Initial timestep in seconds. df = 1.E-8.

DTENG is the time increment when the variation of pressure (at the right

boundary) or TWALLX is speci�ed at constant time increments. For

example, if pressure and/or temperature data are available from an

engine at each crank angle, DTENG is the time corresponding to 1

crank angle degree.

DTMAX Maximum timestep in seconds to be allowed when problem is

running. Must be set nonzero in input deck. df = 0.0.

DTMIN Minimum timestep in seconds to be allowed when problem is run-

ning. Pick value such that if problem drops to this timestep, it should

stop before wasting more computer time. df = 1.E-8.

DTXMX Maximum timestep for next cycle is DTXMX*DT, where DT is

current timestep. df = 1.1.

DZERO For �T corresponds to D0
i of Eq. (2.7). See also DCZERO. df =

1.6E-6.

EDIT4MN Reaction rates less than EDIT4MN times (sum of absolute

values of rates a�ecting species) are not printed out in zone rate edit.

See IPRINT(4). One can get all rates printed out by setting EDIT4MN

= 0.0, EDIT4MX = 1.0. df = 0.01.
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EDIT4MX When sum of reaction rates is at least EDIT4MX times (sum

of absolute values of rates a�ecting species) no more reactions are

printed out in zone rate edit. See IPRINT(4). One can get all rates

printed out by setting EDIT4MN = 0.0, EDIT4MX = 1.0. df = 0.99.

EDITRAT is a ag to set to write out net rates for plotting. df = 0.

EDOTRMIN is used to stop the speci�cation of the zone temperature

when the zone heat release exceeds EDOTRMIN.

EFF(MXI*MXKE) Third body e�ciencies for each specie in selected

reactions. Use together with LISTRE. The �rst IMX values in EFF

refer to LISTRE(1), the next IMX values for LISTRE(2), and so on.

df = 1.0

MXKE (maximum number of reactions in which the e�ciency of species

can be changed) is 10.

ERLIM If Rk > ERLIM times Rmax, \*" is printed instead of \=" in

zone rate edit. Allows one to tell if reaction is too large. See Eq. (7.4).

df = 0.5.

ETA1 � of Eq. (5.6). df = 1.0.

ETA2 Fraction of zone width dynamic rezoner is allowed to move boundary

through in one cycle. df = 0.2.

ETA3 Fraction of quantity in zone allowed to be removed from zone by

second order remap before remap drops to �rst order. df = 0.4.

EULER Flag for Eulerian calculation. Eulerian calculation done if nonzero.

df = 0.0.

EULER2 If equal 0.0, �rst order remap of Eq. (5.3) is done. If equal 1.0,

second-order remap of Eq. (5.5) is done. If equal -1.0, second-order

remap of Eq. (5.7) is done. For laminar ames set equal -1.0. df =

0.0.

FIX is used with TFIX(J) to prescribe zone dependent heat transfer. FIX

is the reciprocal time constant for heat transfer. Set it to a large (e.g.

1.e10( to absolutely hold the temperatures �xed at TFIX(J). df = 0.
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FNERTIA Factor multiplying left side of Eq. (2.9). If small, damps out

sound waves, since it cuts down inertial resistence to pressure gradi-

ents. Never set to zero. df = 1.0.

FRC(K) K = 1,KMX Ak of Eq. (2.2) for forward reaction rate. Usually

read from CDAT but can be modi�ed in input. Modi�cation must be

nonzero since code keeps CDAT value if input is zero. If real zero is

desired, input a very small number. K must refer to index in problem,

not index in CDAT. If NREACT is nonzero, special reactions with the

form of Eq. (7.9) will have indices in the problem that are less than

the indices of the normal reactions. See NREACT.

FRCMUL(MXK) are multipliers of A-factor for forward reaction rates.

df = 1.0

FRP(K) K = 1,KMX bk of Eq. (2.2) for forward rate. See FRC.

FRX(K) K = 1,KMX Ea
k of Eq. (2.2) for forward rate. See FRC.

GAUSDX See C2, S2. Must be nonzero if C2 or S2 nonzero and dynamic

rezoner is used. df = 0.0.

GAUSX See C2, S2. df = 0.0.

H0(I) I = 1,IMX Enthalpy at 298:15�K in kcal=mole. See CPA1.

IBNDRYL is a ag for the left boundary condition.

= 1 means �xed wall.

= 2 means open boundary with prescribed pressure PRBL.

= 3 means prescribed boundary ux (See CBURNR).

df = 0 . If = 0, SETUP will reset it to 3, if PRBL(1) is greater than

0.; else it is set to 1.

IBNDRYR is a ag for the right boundary condition.

= 1 means �xed right boundary.

= 2 means open right boundary with three options: pressure lookup of

pressure and time, table lookup of pressure only, or pressure speci�ed

by a cubic.

df = 0 . If = 0, SETUP will reset it to 2 if PRBR(1) is greater than

0. or if NPRBRENG is greater than 0; else it is set to 1.
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ICDAT(MXI) is a ag to use NASA coe�cients instead of CDAT data.

Set ICDAT(I) = 1 for specie with index I.

ICMXA, ICMXB are 8 character strings. df = ". If set, species last with

names whose �rst 8 characters match the strings will be involved in

the ICMXEDIT.

ICMXEDIT is a ag for a special edit. df = 0 .

= -1 means the maximum of specie with name ICMXA * specie with

name ICMXB.

= 1 means edit max of specie with index ICMXEDIT.

= -1 means produce a zone edit at the time that the product of CO and

O concentrations reaches a local maximum. Used to simulate shock

tube experiments which use CO2 chemiluminescence as a diagnostic.

= I, where I is greater than 0 means produce a zone edit at the time

when the concentration of species I reaches a local maximum in time.

IEDIT4 is a ag to list reactions rates in EDIT4 as fractions of the total

rate (if = 0) or as fractions of the total chemistry rate (if nonzero). df

= 0 .

IEDOTR If set to a positive value, compute and edit the location and

value of the point of maximum chemical heat release. Generally used

in laminar ame problems to locate the ame position. df = 0 .

IFLAME is the same as IEDOTR, but here the ame position is de�ned

as the location where interpolated zone temperature is exactly equal

to TFLAME(1) or TFLAME(2). df = 0 .

IFPISTON is a ag for the free piston model. Set to 1 to use the model.

df = 0. See also CMPRATIO.

IFUELCS is the specie for the fuel consumption edit. df = 0 for no edit.

(See IPRINT(7).)

IHEDIT If positive, replace VSOUND with HEDIT in EDIT1. df = 0 .

IHTREL is a ag to include wall heat transfer only until zone 1 shows

positive rate of heat release. Used in thermal ignition problems. df =

0 .
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ILAVID If nonzero, it is the index of the reaction whose forward rate will

be multiplied by XLAVID, when the temperature falls in the range

[TLAV1,TLAV2]. df = 0 .

IPMXEDIT If pistive, edit the maximum rate of pressure rise and the

time when it occurs. df = 0 .

IPRINT(L) L = 1,9 Number of cycles between call to the possible prob-

lem edits. IPRINT(L) = 0 means edit number L is not called by this

sentinel. See also LCYC(L), MCYC(L). The possible edits are:

IPRINT(1) General edit of problem designed to give overall picture

of what is happening in problem. df = 100.

IPRINT(2) Debug edit giving behavior of iterations. Will print

out how variables change each iteration during cycle. See also

LONGE2. df = 0.

IPRINT(3) Causes problem dumps to be taken. Graphics and

restarts are made from these dumps and taking them is generally

very cheap. May want to increase default frequency by an order

of magnitude. The dumps are written into �les named DFILE0,

DFILE1, etc. See also MAXDUMP. df = 100.

IPRINT(4) Zone rate edit. Gives printout of all rates a�ecting vari-

able changes in zone. See also EDIT4MN, EDIT4MX, LSTE4.

df = 0.

IPRINT(5) Gives edit of species mole fractions for problem. df =

100.

IPRINT(6) Edit of Lagrange and Eulerian (if appropriate) relative

changes of physical variables per cycle. df = 0.

IPRINT(7) Fuel consumption edit. df = 0 .

IPRINT(8) Edit cycle, time, time step, and temp of zone 1 to the

terminal. df = 0 .

IPRINT(9) Edit time, mass of certain species and total moles to a

separate ASCII �le named `rad'. df = 0 .

IRF(K) K = 1,KMX For reactions of the form of Eq. (7.1), this is the

reaction type according to the kinetics calculation description, and is

never changed. For special reactions of the form of Eq. (7.9), a nonzero

value acts as a ag to include ctot in the rate. df = 0.
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IRCYMX Maximum number of times the code will cut timestep and retry

cycle before quitting when iterations are not converging in ITERMX

tries. df = 5.

IRS(K,L) K = 1,KMX; L = 1,4 Index, in CDAT �le, of species in re-

action K, according to de�nition outlined in kinetics calculation de-

scription. Never changed for regular reactions, but must be set for

special reactions with form of Eq. (7.9). See NREACT.

ISANDTR Flag to turn on Sandia transport package. df = 0 for not on.

(See DMUL, NAMLINK, and NTRANFRQ.)

ISP(K,L) K = 1,KMXS; L = 1,3 Index, in CDAT �le, of cm in special

reactions with form of Eq. (7.9). See NREACT.

ITERMX Maximum number of iterations code will make in trying to solve

nonlinear equations of motion before cutting timestep. df = 20.

ITIMER Sentinel for timing select subroutines. Set nonzero if timing in-

formation desired. df = 0.

ITZ1MX Maximum number of iterations on startup cycle to solve for �

of Eq. (6.2) so that Eq. (6.5) is satis�ed. Normally not changed. df =

20.

ITZ2MX Maximum number of iterations of w to solve Eq. (6.7). If HCT

reaches this maximum when generating a new problem, might want

to increase over default. Default should be adequate for a running

problem. df = 20.

IWALL ag to set WALL in CALBDY. df = 0 .

WALL = WALL1(IT3) + ( WALL1(IT3+1) - WALL(IT3) )

* ( TIME - WALLT(IT3) ) / ( WALLT(IT3+1) - WALLT(IT3) )

IZEDIT If positive, add forward and reverse reaction rates, temperature,

and species concentrations for zone IZEDIT to usual kinetics edit. df

= 0 .

KEQ(MXK) For each reaction if KEQ(K)

= 1, use forward rate and equilibrium data to compute reverse rates;

= -1, use reverse rate and equilibrium data to compute forward rate;
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= 0, use both rates from CDAT.

= 2, use the CHEMKIN method for re-calculating reverse rates.

= -2, use the CHEMKIN method for re-calculating forward rates.

df = 0 .

LCYC(L) L = 1,6 Turns on edit L for every cycle .GE. LCYC(L). df =

MXCYCLE + 2.

LIST24(MXI), LIST58(MXI), LISTMETH, LISTNOCT are the in-

dices (problem-based) of species which are C2-C4, C5-C8, methane,

and n-octane respectively. These indices are used to compute the mass

of all C2-C4 species, C5-C8 species, methane, and n-octane and the

total moles for EDIT9. (See IPRINT(9).)

LISTR(K) K = 1,KMX Index in CDAT �le of reaction to be used. df

= 0. If any LISTR(K) is negative, the reaction name is set to \NO

REACTION", and the rates are set to 0.

LISTRE(MXKE) is list of reactions (indices of reactions in input LISTR,

rather than CDAT numbers) for which variable third body e�ciencies

are to be used in rate expression. Use with EFF (Q.V.).

LISTRF(MXKF) is list of reactions (values in problem input) which are

treated as \unimolecular" reactions in the fall-o� region whose rate

constants conform to the Lindemann form,

k =
k1

1 + �
[M ]

where � = ARC � TARP � exp(�ARX=RT ). The parameters for k1

are speci�ed in the usual manner and given in the main reaction listing

for a problem.

LISTRLIN(MXKF) is a list of reactions numbers whose rates are treated

as \unimolecular" reactions in the fallo� regime. The reaction numbers

correspond to the order listed in the input�le. Their rate coe�cients

conform to the form,

k = k1

�
Pr

1 + Pr

�
F
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where the reduced pressure Pr is given by

Pr =
k0[M ]

k1

F = 1, for the Lindeman form used in this case.

k0 = RCLIN � TRPLIN � exp(�RXLIN=RT )

M = total concentration, CTOT.

The parameters for k are speci�ed in the usual manner and given in the

main reaction listing for a problem. The above reaction rate speci�ca-

tion was chosen to correspond closely with that given in CHEMKIN

II.

Related variables include: RCLIN(MXKF), RPLIN(MXKF), RXLIN(MXKF),

where MXKF = 10.

LISTRTRO(MXKF) is a list of reactions numbers whose rates are

treated as \unimolecular" reactions in the fallo� regime. The reaction

numbers correspond to the order listed in the input�le. If the reaction

being speci�ed in the forward direction, LISTRTRO is positive. If

the reaction is being speci�ed in the reverse direction, LISTRTRO is

negative. See LISTRLIN for the assumed form of the rate coe�cient.

k0 = RCTRO � TRPTRO � exp(�RXTRO=RT )

F is given by the Troe form:

logF =

 
1 +

�
logPr + c

n� d (logPr + c)

�2!�1
logFcent

where

c = �0:4� 0:67 � logFcent

n = 0:75 � 1:27 � logFcent

d = 0:14

Fcent = (1�ATRO) exp(�T=T3TRO)

+ATRO � exp(�T=T1TRO) + exp(�T2TRO=T )
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The last term is often not used, so the default for T2TRO is 1.0e100

The defaults for ATRO, T3TRO, T1TRO are zero. The above reaction

rate speci�cation was chosen to correspond closely with that given in

CHEMKIN II.

Related variables include: ATRO(MXKF), RCTRO(MXKF), RPTRO(MXKF),

RXTRO(MXKF), T2TRO(MXKF), T3TRO(MXKF), where MXKF

= 10.

LISTRSRI(MXKF) is a list of reactions numbers whose rates are

treated as \unimolecular" reactions in the fallo� regime. The reaction

numbers correspond to the order listed in the input�le. See LISTRLIN

for the assumed form of the rate coe�cient.

k0 = RCSRI � TRPSRI � exp(�RXSRI=RT )

F is given by the SRI form:

F =

�
ASRI � exp(�

BSRI

T
+ exp(�

T

CSRI
)

�x
dTESRI

where

X =
1

1 + log2 Pr

The above reaction rate speci�cation was chosen to correspond closely

with that given in CHEMKIN II.

Related variables include: ASRI(MXKF), BSRI(MXKF), CSRI(MXKF),

DSRI(MXKF), ESRI(MXKF), RCSRI(MXKF), RPSRI(MXKF), RXSR(MXKF),

where MXKF = 10.

LISTS(I) I = 1,IMX Index in CDAT of species to be used. Must specify

at least one species. df = 0.

LISTTVR(MXTVR) is a list of indices of those reactions that have time-

varying rates, prescribed by:

FRC(LISTTV R(K)) = 1:064 � C1TV R(K) �

exp

 
�2:773 �

�
C2TV R(K)� TIME

C3TV R(K)

�2!

Added for a nuclear chemistry application of HCT.
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LONGE2 If nonzero, IPRINT(2) gives edit of every variable's change dur-

ing iteration. If zero, only those variables that have not converged are

printed. df = 0.

LPLOT1Z is a ag for edit for 1-zone comparison plots. df = 0 .

LSTE4(J) J = 1,JMXM2 List of zones for which IPRINT(4) will give

zone rate edit. Do not count dummy boundary zones in calculating

zone numbers. df = 0.

MASSAVG If set to 1, the code will calculate and edit mass-averaged,

total problem PBAR and TBAR. df = 0 .

MAXDUMP Maximum number of cycle dumps written into single dump

�le by IPRINT(3). df = 100.

MBOXID(3) is the box ( MBOXID(1) = 'box ann' ) and problem id (MBOXID(2)

and MBOXID(3)). (Total of 24 characters)

MCYC(L) L = 1,6 Turns on edit L for each cycle .LE. MCYC(L). df =

1 if IPRINT(L) .NE. 0; df = 0 if IPRINT(L) .EQ. 0 (default is to print

edit L on �rst cycle if edit called during rest of problem).

MXCYCLE Maximum number of cycles problem will run before quitting.

Be sure to set. df = 0.

MXMZ Maximum number of steps in � used to integrate Eq. (6.17). df =

100.

MXSKPJ Maximum number of iterations problem will go before updating

Tm in Eq. (4.8). df = 20.

NAMDUMP Name of dump �le for restarts. When reading from NAM-

DUMP, the code picks up the cycle number, time, timestep and the

values of ci;j , Tj , �rj and vj+ 1
2
for a particular cycle. The rest of the

parameters are set as usual from the input deck. See also NDUMP0

and NCYC0. df = 4HNONE (code assumes not restarting a problem).

NAMLINK Name of CHEMKIN link �le. df = `tplink'.

NCYC0 In restarts, code will obtain initial values of the physical variables

at cycle NCYC0 from NAMDUMP. If NCYC0 = -1, problem will

restart from last dump in restart �le. Also see NAMDUMP. df = -1.
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NDUMP0 When restarting from one of a problem's dumps in NAMDUMP,

NDUMP0 may be used to specify the number of the restart dump in

NAMDUMP. This is not the cycle number of the dump, but rather

the sequence number in NAMDUMP. Usually requires knowledge of

which dumps correspond to which problem cycle. This information is

printed in HSP output. Also see NAMDUMP. df = 0.

NREACT Number of special reactions of the form of Eq. (7.9). Carried

internally in code as KMXS. See IRF, IRS, XNP, ISP, XLP, FRC,

FRP, FRX, RNLHS and RNRHS. Only one reaction is speci�ed for

each special reaction entry, i.e. no reverse rate is implied.

For example, suppose one wants the nonstandard overall reaction

F +
1

4
O ! R;

where F represents fuel, O represents oxidizer and R represents an

intermediate radical. Suppose we are using species 16, 4, and 94 in

the CDAT �le to represent F , O and R. Furthermore, assume Eq. (7.9)

is to give

R = f(T )c
1
4

16c
3
4

4 c
1
94:

with nonzero FRC, FRX in the f(T ) of Eq. (7.2). The following input

will set the appropriate data with K = 1:

((IRS(L,M),L=1,1),M=1,3)=16 4 94

((XNP(L,M),L=1,1),M=1,3)=1. .25 -1.

((ISP(L,M),L=1,1),M=1,3)=16 4 94

((XLP(L,M),L=1,1),M=1,3)=.25 .75 1.

FRC(1)=1.2E14

FRX(1)=2.9E4

RNLHS(1)=8H F+1/4O

RNRHS(1)=5H R

Note how the two-dimensional arrays IRS, XNP, ISP, and XLP are

read in.

The special reactions will have problem indices less than the indices of

the reactions read from CDAT. The order in the code is special reac-

tions �rst, followed by the regular reactions as encountered in LISTR.

See FRC.
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NTRANFRQ Frequency of call to TRANSCOF (interface to Sandia trans-

port package). df = 1 . (See ISANDTR, DMUL, NAMLINK.)

NZONES Number of physical zones. Carried internally as JMXM2. Must

be set. df = 0.

NZXCESS N� of Eq. (6.5). Be sure to set if dynamic rezoning is done. df

= 0.

PISTON Volume at top dead center. Usually set to 1.e-4. Used when zone

volume is speci�ed by slider crank angle formula. See RPM.

POLYTROP is an option to CALBDY. If greater than 0.0, CALBDY

will the polytropic coe�cient to compute the volume (at the �xed left

boundary). df=0.0.

PR0 Initial pressure in CGS units. If set nonzero, code will scale all ci;j so

that there is constant pressure PR0 in the problem. Especially useful

if species distribution is nonuniform. df = 0.0.

PRBL Pressure in CGS units at left (x = 0:) boundary. Setting this vari-

able nonzero will result in left boundary being open and allow material

to ow in and out of it. If zero, left boundary is �xed wall with no

transport through it allowed. df = 0.0.

PRBMUL is a scaler for input pressure histories. This provides a conve-

nient means of scaling a large array of prescribed pressure data. df =

1.

PRBR Pressure at right (x = XMAX) boundary. See PRBL. df = 0.0.

PRBRENG(MXPRBRE) Used to specify the time variation of pres-

sure at the right boundary as a table of pressure and time entries.

PRBRENG is an array which gives the pressure values in the table.

TIMDAT is the array which gives the corresponding time values. A

linear interpolation is performed for times between table entries.

PREDIT2 Factor multiplying third term on right side of Eq. (4.14), which

give extrapolated variables at end of cycle. Makes possible use of only

�rst-order extrapolation. Usually not set. df = 1.0.
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PRL1(MXP3), PRL2(MXP3), PRL3(MXP3) Left boundary pressure

can be prescribed by a cubic expression in time,

pressureleft = PRBL+ PRL1 � t+ PRL2 � t2 + PRL3 � t3

A di�erent cubic expression can then be used in a subsequent time

interval. PRL1(1) is for the �rst time interval, PRL1(2) is for the sec-

ond time interval, etc. Time intervals are prescribed with TSTARTP3.

Constant boundary pressure is a special case, with PRBL(1) = desired

value, all others, including PRL1, PRL2, and PRL3 = 0.

MXP3 (maximum number of pressure cubics) is 6.

PRR1(MXP3), PRR2(MXP3), PRR3(MXP3) Same as PRL1, PRL2,

and PRL3, but for right boundary.

PRMUL If zero code bypasses hydro calculation. If PRMUL = 0.0, keep

QK = 0.0. df = 1.0.

QK Viscosity coe�cient � of Eq. (2.12). df = 0.0.

RDELCMX Maximum relative change per cycle allowed physical variables

except species whose mole fraction is less than CNEGF. df = 0.05.

RDELCNEG Maximum relative change per cycle allowed species whose

mole fraction is less than CNEGF. df = 0.5.

RDELW1 Maximum relative change allowed in w when updating the � of

Eq. (6.2) to satisfy Eq. (6.5). df = 0.2.

RDELW2 Maximum relative change allowed inw when integrating Eq. (6.17).

df = 0.05.

RDOFF Number on the order of machine roundo�. Used to keep divide-

by-zero's from occuring. df = 1.E-14.

RELDC(I) I = 1,IMX Used to scale D0
i . See DCZERO. df = 1.0.

RHOZERO Used in calculation of XCH. Set for zone 1 (zone mass) in

SETUP.

RLIM k1 of Eqs. (7.5) and (7.6). Used to de�ne Rmax. Users should check

that default is adequate for their problems. Also see TAUILIM. df =

1.E16.
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RNAMES(LS,MXI) Names of reactant in Hollerith or BCD form. Each

name is LS Cray words long. (Currently, LS = 2, so the names are

16 characters long.) Used when desired species are not available in

CDAT or when they must be changed for some reason. df = taken

from CDAT based on LISTS.

RNLHS(LR,MXK) Hollerith description of left side of reaction equation.

(Currently, LR = 4, so a side of the reaction name is at most 32

characters. ) Used in edits. Usually taken from CDAT �le except

for special reactions of form Eq. (7.9). Should be centered in machine

word. See NREACT for example.

RNRHS(LR,MXK) Hollerith description of right side of reaction equa-

tion. See RNLHS.

RPM One of the parameters used to allow the zone volume to change with

time in the same manner as the combustion chamber volume in a

reciprocating engine. The zone volume is speci�ed as a function of

time according to the slider crank angle formula.

zone volume = PISTON�

5:236 � 10�6RPM(COMPRESS � 1)[sin(CA) + 0:5STROKE sin(2CA)]q
1� (STROKE)2 sin2(CA)

where CA=0.10472*RPM*TIME-TT, CA is 0 at top dead center,

RPM is the engine speed in revolutions per minute, COMPRESS is

the compression ratio, and STROKE is the half stroke to rod ratio.

RRC(K) K = 1,KMX Ak of Eq. (2.2) for reverse reaction rates. See

FRC.

RRCMUL(MXK) are multipliers of A-factor for reverse reaction rates.

df = 1.

RRP(K) K = 1,KMX bk of Eq. (2.2) for reverse reaction rates. See FRC.

RRX(K) K = 1,KMX Ea
k of Eq. (2.2) for reverse reaction rates. See

FRC.

RZCNVG Convergence criteria on solution of Eq. (6.7) for w. The code

iterates until w changes less than RZCNVG. df = 0.01.
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RZERO is sum of time step * velocity in zone 1. df = 0.

RZFLAG Flag for dynamic rezoner. Must be set nonzero if dynamic re-

zoning desired. See also DELYMN. df = 0.0.

S0 Used to initialize nonuniform zoning to match step function. Works

similarly to C0(I) but physical variables must be set independently.

Useful if variables are initially constant but one wants to choose initial

zoning so that resolution present when source turned on. As with C0,

(see also Eq. (9.3), let

�(x) =
1

1 + exp

�
x�XDISC

XSPRD

�

The code will initialize zoning to describe

S(x) = �(x)S0 + [1� �(x)] S1 + �(x)S2:

For description of �(x), see S2. NZXCESS and XSPRD should be

nonzero. Note that since S0 and C0 use the same variables to de�ne

�, one cannot use both in same problem.

S1 See S0.

S2 With GAUSX and GAUSDX, allows one to initialize zoning to match a

localized distribution characterized by the function

�(x) =
4

[1 + exp(�y)] [1 + exp(y)]

where

y =
x�GAUSX

GAUSDX

�(x) has a maximum of 1 at GAUSX, and falls exponentially to zero

over a distance characterized by GAUSDX. We use this form rather

that a true Gaussian because it is the derivative of Eq. (9.3), so that

the inde�nite integral analogous to Eq. (9.4) is easily done. See S0.

SORPCC Svol of Eq. (9.1). See also SORSPRD, SORXMAX, SORSWF

and TIG. df = 0.0.

SORPGM Smass of Eq. (9.2). See also SORSPRD, SORXMAX, SORSWF

and TIG. df = 0.0.
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SORSPRD �x of Eq. (9.3). Must be nonzero if used. See also SORPCC,

SORPGM. df = 0.0.

SORSWF When nonzero, code checks to see if rate of energy production

due to reactions is greater that SORSWF times source energy rate.

If it is, sources are turned o�. Provides a way of cutting o� sources

when reactions have started. See also SORPCC, SORPGM. df = 0.0.

SORXMAX x0 of Eq. (9.3). See also SORPCC, SORPGM. df = 0.0.

STROKE Stroke of engine. Used when zone volume is speci�ed by slider

crank angle formula. See RPM.

TAUILIM 1=� of Eq. (7.7). Used to de�ne Rmax. User should check that

default is adequate for their problems. See also RLIM. df = 1.E20.

TEMPMX Maximum temperature. If non-zero, code execution stops when

temperature in zone 1 exceeds TEMPMX. df = 0.0.

TENG(MXPRBRE) An array used to specify the time variation of TWALLX

by interpolating from a table of values. (See WALL.) The tempeatures

in the table are speci�ed by TENG. The corresponding times in the ta-

ble are speci�ed by the array TIMDAT. A linear interpolation between

table entries is performed. df = 0. MXPRBRE (maximum number of

table pressure values) = 400.

TFIX(MXJM1) TFIX(J) is the wall temperatures for zone J. Used with

FIX(Q.V.) to include heat transfer to all zones of a problem. df = 0.

TFLAME(2) are two temperature values which can be used to de�ne ame

location in a multizone problem. Exact locations are linearly interpo-

lated between zone center values. df = 1500., 2000.

TIG Maximum time of energy deposition. Sources are on for times less

than TIG. See also SORPCC, SORPGM. df = 0.0.

TIMDAT(MXPRBRE) An array of times used to specify the time vari-

ation of TWALLX as a table. See WALL and TENG. Also used to

specify the time variation of pressure at the right boundary. (See

PRBRENG.)

TIME is the problem time variable. It can be set initially to any value,

but is usually 0. initially.
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TIMEMX Maximum problem time. Must be set to run past �rst cycle.

df = 0.0.

TIMREF is used to o�set the time a table lookup of pressure or temper-

ature is performed.

TIMRPM is used to modify the time that a table lookup of pressure or

temperature is performed, so that the same pressure or temperature

history can be used for di�erent engine speeds.

TLAV1, TLAV2 select a temperature window (TLAV1 <= TEMP <=

TLAV2) within which to modify a give reaction rate. See ILAVID and

XLAVID. Defaults: TLAV1 = 0. and TLAV2 = 1.e10.

TSTARTP3(MXP3) is an array used when specifying the time variation

of pressure of the right-hand boundary as a series of cubics. MXP3

(maximum number of pressure cubics) is 6.

TSTOPT3(MXT3) See TWALL(I). MXT3 (maximum number of tem-

perature cubics) is 25.

TWALL(MXT3), TWALL1(MXT3), TWALL2(MXT3), TWALL3(MXT3)

Used to specify TWALLX for the case of a constant wall temperature.

The time dependence of TWALLX is speci�ed as a series of cubics.

TWALLX = TWALL(I)+TWALL1(I)�t+TWALL2(I)�t2+TWALL3(I)�t3

for TSTOPT3(I-1) <= t <= TSTOPT3(I) where t is time. Note that

the �rst cubic extends from 0 <= t <= TSTOPT3(1).

WALL A parameter used to allow heat transfer out of the left boundary.

The heat loss is proportional to WALL*(T-TWALLX), where T is the

temperature of the zone adjacent to the left boundary. TWALLX is

speci�ed as a constant temperature, TWALL, or is time dependent.

The time dependence of TWALL can be speci�ed as a series of cubics

(see TWALL(I)) or as a table of values (see TENG).

WALL1(MXWALL) See IWALL. MXWALL = 25.

WALLT(MXWALL) See IWALL.

XDISC See C0, S0.0. df = 0.0.
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XFLSTOP is position to stop execution when either ame reaches it. df

= 1.e+20.

XKC(MXK), XKP(MXK), XKX(MXK) specify specie equilibrium con-

stants. Values are read in from CDAT, but user may override them in

input.

XLAVID is multiplier of forward rate (for LAVID option). df = 0.

XLP(K,L) K = 1,KMXS; L = 1,3 The exponential powers �m in Eq. (7.9).

Must be set for special reactions. See NREACT. df = 0.0.

XMAX Maximum coordinate in problem. Left boundary of problem is

always zero. Must be set. df = 0.0.

XNP(K,L) K = 1,KMXS; L = 1,4 Stoichiometric coe�cients for species

given by IRS array for special reactions of the form of Eq. (7.9). A

positive number � means � molecules are destroyed in reaction. A

negative number � means � molecules are created by reaction. Must

be set for special reactions. See NREACT. df = 0.0.

XSPRD See C0, S0. Must be nonzero if C0 not equal to C1 and dynamic

rezoner is used. df = 0.0.


